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June 25, 2012

Abstract

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has
been designed as a SPICE-compatible, high-performance analog circuit simulator, and
has been written to support the simulation needs of the Sandia National Laboratories
electrical designers. This development has focused on improving capability over the
current state-of-the-art in the following areas:

� Capability to solve extremely large circuit problems by supporting large-scale par-
allel computing platforms (up to thousands of processors). Note that this includes
support for most popular parallel and serial computers.

� Improved performance for all numerical kernels (e.g., time integrator, nonlinear
and linear solvers) through state-of-the-art algorithms and novel techniques.

� Device models which are specifically tailored to meet Sandia’s needs, including
some radiation-aware devices (for Sandia users only).

� Object-oriented code design and implementation using modern coding practices
that ensure that the Xyce Parallel Electronic Simulator will be maintainable and
extensible far into the future.

Xyce is a parallel code in the most general sense of the phrase - a message passing
parallel implementation - which allows it to run efficiently on the widest possible number
of computing platforms. These include serial, shared-memory and distributed-memory
parallel as well as heterogeneous platforms. Careful attention has been paid to the
specific nature of circuit-simulation problems to ensure that optimal parallel efficiency
is achieved as the number of processors grows.

The development of Xyce provides a platform for computational research and de-
velopment aimed specifically at the needs of the Laboratory. With Xyce, Sandia has
an “in-house” capability with which both new electrical (e.g., device model develop-
ment) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms)
research and development can be performed. As a result, Xyce is a unique electrical
simulation capability, designed to meet the unique needs of the laboratory.
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1. Introduction

Welcome to Xyce
The Xyce Parallel Electronic Simulator is a SPICE-compatible [1] [2] circuit simulator that
has been written to support the unique simulation needs of electrical designers at Sandia
National Laboratories. It is specifically targeted to run on large-scale parallel computing
platforms, but is also available on a variety of architectures including single processor
workstations. It aims to support a variety of devices and models specific to Sandia needs,
as well as standard capabilities available from current commercial simulators.
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1.1 Xyce Overview
The Xyce Parallel Electronic Simulator project was started in 1999 to support the simula-
tion needs of electrical designers at Sandia National Laboratories. The current release of
Xyce is version 5.2, and the code has evolved into a mature platform for large scale circuit
simulation.

Xyce includes several unique features. In addition to allowing the simulation of circuits of
unprecedented size, Xyce includes novel approaches to numerical kernels including time
integration algorithms, nonlinear and linear solvers. The primary driver for this numerical
innovation has been the need to simulate very large scale circuits (100,000 devices or
more) on the analog level. However, it has yielded benefits, in terms of robustness and ef-
ficiency, for all classes of problems. Ideally, the increased numerical robustness minimizes
the amount of simulation “tuning” required on the part of the designer.

1.2 Xyce Capabilities
Xyce has a number of unique features which are described in this section.

Support for Large-Scale Parallel Computing

Xyce is a truly parallel simulation code, designed and written from the ground up to support
large-scale parallel computing architectures with up to thousands of processors. This gives
Xyce the capability to solve circuit problems of unprecedented size in time frames that
make these simulations practical.

Xyce as a parallel code uses a message passing parallel implementation, which allows it to
run efficiently on the widest possible number of computing platforms. These include serial,
shared-memory and distributed-memory parallel. Furthermore, careful attention has been
paid to the specific nature of circuit-simulation problems to ensure that optimal parallel
efficiency is achieved even as the number of processors grows (parallel scaling).

Improved Performance for all Numerical Kernels

In writing Xyce from scratch, new algorithms and heuristics have been used which improve
the overall performance of the various numerical kernels. For example, a number of new
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developments have made it possible to reliably apply iterative linear solvers to circuit prob-
lems. This allows Xyce to scale well to much larger problem sizes than would be possible
with a conventional circuit simulator. Using iterative linear solvers also allows Xyce to run
much more effectively in parallel.

On the nonlinear solver level, the addition of continuation algorithms to Xyce has been
another recent solver enhancement. In particular, Xyce has been very successful applying
such algorithms to large MOSFET circuits. See chapter 8 for more details.

Device Model Support

New device models are continually being added to Xyce to meet the needs of Sandia
users. For a complete description of each device, see the Xyce Reference Guide [3] . As
there are many devices under development, several devices are available in the develop-
ment branch of the code that are not available in the release branch. For current device
availability, consult with the Xyce development team.

1.3 Reference Guide
A companion document, the Xyce Reference Guide [3] , contains more detailed informa-
tion about a number of topics. Included in this document is a netlist reference for the input-
file commands and elements supported within Xyce; a command line reference, which
describes the available command line arguments for Xyce; and quick-references for users
of other circuit codes, such as Orcad’s PSpice [4] and Sandia’s ChileSPICE.

1.4 How to Use this Guide
This guide is designed so you can quickly find the information you need to use Xyce. It
assumes that you are familiar with basic Unix-type commands, how Unix manages applica-
tions and files to perform routine tasks (e.g., starting applications, opening files and saving
your work).

Typographical conventions

Before continuing in this Users’ Guide, it is important to understand the terms and typo-
graphical conventions used. Procedures for performing an operation are generally num-
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bered with the following typographical conventions.

Notation Example Description

Typewriter text > xmpirun -np 4

Commands entered from
the keyboard on the
command line or text
entered in a netlist. The
initial > character is
intended to represent the
shell prompt.

Bold Roman Font
Set nominal temperature
using the TNOM option.

SPICE-type parameters
used in models, etc.

Gray Shaded Text DEBUGLEVEL
Feature that is designed
primarily for use by Xyce
developers.

[text in brackets] Xyce [options] <netlist> Optional parameters.

<text in angle brackets> Xyce [options] <netlist>
Parameters to be inserted
by the user.

<object with asterisk>* K1 <ind. 1> [<ind. n>*]
Parameter that may be
multiply specified.

<TEXT1|TEXT2>
.PRINT TRAN
+ DELIMITER=<TAB|COMMA>

Parameters that may only
take specified values.

Table 1.1. Xyce typographical conventions.
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1.5 Third Party License Information
Portions of the new DAE time integrator contained in the BackwardDifferentiation15 source
and include files are derived from the IDA code from Lawrence Livermore National Labo-
ratories and is licensed under the following license.

Copyright (c) 2002, The Regents of the University of California.
Produced at the Lawrence Livermore National Laboratory.
Written by Alan Hindmarsh, Allan Taylor, Radu Serban.
UCRL-CODE-2002-59
All rights reserved.

This file is part of IDA.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the disclaimer below.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the disclaimer (as noted below)
in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the UC/LLNL nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
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DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice
---------------------
1. This notice is required to be provided under our contract with
the U.S. Department of Energy (DOE). This work was produced at the
University of California, Lawrence Livermore National Laboratory
under Contract No. W-7405-ENG-48 with the DOE.

2. Neither the United States Government nor the University of
California nor any of their employees, makes any warranty, express
or implied, or assumes any liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately-owned rights.

3. Also, reference herein to any specific commercial products,
process, or services by trade name, trademark, manufacturer or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for
advertising or product endorsement purposes.
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2. Installing and Running
Xyce

Chapter Overview
This chapter describes the basic mechanics of installing and running Xyce. It includes the
following sections:

� Section 2.1, Xyce Installation

� Section 2.2, Running Xyce
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2.1 Xyce Installation
To obtain a copy of Xyce, contact the development team at http://xyce.sandia.gov.

The installation procedure differs depending upon the operating system. To install Xyce,
follow the instructions for your system.

IMPORTANT NOTE: if installing both serial and parallel versions of Xyce, you must
specify different directories for each installation location. Failure to use different
directories will cause the second installation to overwrite parts of the first and will
likely yield an install that does not function.

Installing Xyce on Sandia Capacity Machines

Xyce is installed from the command line. Examples are given for reference.

Instructions Examples

Installation packages are named
according to the target operating system
and architecture (parallel or serial).

Install_Xyce_RedSky_OPENMPI.tar.gz
Install_Xyce_TLCC_OPENMPI.tar.gz
(parallel)
Install_Xyce_Intel64_Linux_Serial\
-Sandia_Capacity_Systems.tar.gz
(serial)

Unpack the appropriate package for your
platform. A similarly named installation
directory is then created.

> tar -xzf \
Install_Xyce_RedSky_OPENMPI.tar.gz

Enter this directory and run the
installation shell script.

> cd Install_Xyce_RedSky_OPENMPI
> sh install_RedSky_OPENMPI.sh

Provide the requested information.
Where should Xyce be installed?
/home/myname/Xyce-5.3

We recommend that you specify a completely new directory in which to install Xyce rather
than a general system directory. For example, /home/myname/Xyce-5.3 would be a better
choice than /home/myname. Doing this will help isolate your Xyce installation and make
uninstallation or upgrade easier.
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Installing Xyce on Red Hat Enterprise Linux

Binaries for Xyce Release 5.3 are currently provided in RPM format only for Red Hat En-
terprise Linux versions 5 and 6 (RHEL5 and RHEL6). The installation process is performed
using the yum program.

Red Hat Enterprise Linux 5

To install the serial version of Xyce on RHEL5 (which is provided in a file called “In-
stall Xyce Intel64 Linux Serial-icc111 tri1010.rpm”), run yum with the following command
line:

sudo yum install --nogpgcheck \

Install_Xyce_Intel64_Linux_Serial-icc111_tri1010.rpm

Installation of other versions of Xyce are the same, with only the file name of the RPM
changing.

It is necessary to perform this operation as the root user, and it is presumed here that you
have the necessary permissions to do so using the sudo program. If you do not, you must
get your system administrator to perform this operation.

yum will examine your system and make sure that any external packages that Xyce requires
are installed, and if they are not will add them to the list of packages it will install at the
same time as Xyce. The parallel version of Xyce will usually install quite a number of
dependent packages.

RHEL5 provides no automatic way to uninstall all of these dependent packages along with
Xyce, should you decide to do so. It is, therefore, helpful to write down at this time all of
the dependent packages yum tells you it is installing along with Xyce. Save this list in case
you ever wish to uninstall Xyce.

Red Hat Enterprise Linux 6

Installation of Xyce on RHEL6 is the same as on RHEL5, although it is no longer strictly
necessary to include the --nogpgcheck option. The file names for RHEL6 rpms are some-
what different, as they include RHEL6 and gcc44 where the RHEL5 file names have Linux
and icc111, but otherwise the process is identical.
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The version of yum provided with RHEL6 has a much easier method of doing a complete
uninstall should you want to do so, so it is unnecessary to save a list of all dependent
packages it installs in the process.

Post-installation steps for Red Hat Enterprise Linux

In order to run Xyce, you will either need to type the path to its run script every time, or add
the installed location of Xyce to your PATH variable. Do so by editing your shell start-up
file (.bashrc if your shell is bash, .profile if your shell is sh, or .cshrc if your shell is the
c-shell). Exact syntax depends on the shell you use, but for bash and sh the syntax is:

export PATH=/usr/local/Xyce-5.3/bin:$PATH

The exact path will depend on the version of Xyce you installed. Look in /usr/local with the
following command

ls -l /usr/local

to identify the actual install directory used by the version of Xyce you installed. Once en-
tered into the start-up file, your path will be set this way the next time you log in. The same
command can be issued directly in the command line and it will take effect immediately

If you are installing the parallel version of Xyce (from an RPM file with OPENMPI in its name,
yum will install openmpi libraries, but will not detect that it needs also to install openmpi
executables as well. It is therefore necessary to apply this installation manually as a post-
installation step.

sudo yum install openmpi

This will, in turn, install several other libraries. Remember that Red Hat Enterprise Linux 5
does not give you an easy way to do a complete uninstall of all packages that are pulled
in as dependencies, so make a note of which packages are added if you think you might
need to remove them all later.

On RHEL5 you must then add the path to the mpirun executable to your path. Again, the
syntax to enter into your .bashrc or .profile would be:

export PATH=/usr/lib64/openmpi/1.4-gcc/bin:$PATH
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On RHEL6, a different procedure is used to get both the MPI binary directory into your
path and the system dynamic loader to find the MPI libraries. Add the following command
to your startup file:

module load openmpi-x86_64

This will update your path and assure that MPI programs such as Xyce will find the appro-
priate MPI libraries they need at run time.

Installing Xyce on Microsoft Windows

Xyce is installed from a self-extracting archive. Run the Install-Xyce.exe program and
follow the on-screen instructions. By default on Windows 7, the Xyce package is installed
in the C:\Program Files (x86)\ folder.

A Start Menu folder will be created during the installation, in addition to a shortcut on the
desktop. The documentation can be accessed from the Start Menu. Xyce is currently
able to be run only from the command line, so the “Xyce Command Prompt” shortcuts
automatically set up the command prompt environment for Xyce. You may customize either
or both of the shortcuts by right-clicking on the appropriate icon and selecting “Properties”.

• In the “Shortcut” tab, you can change the ”Start in” field to a convenient folder in which
the command prompt will start. One possible location is C:\Users\<username>,
where <username> is your login name; this will start the prompt in your home folder.

• In the “Layout” tab, you can change the window size.

• Click “OK” when you have completed your changes.

Note that the two shortcuts are independent, so changes in one will not affect the other.
If you wish to play with settings, it is recommended that you practice with the desktop link
first. That way, if something breaks, you can put that link in the Recycle Bin, then copy
the shortcut located in the Start Menu (through a right-click → Copy) and paste it onto the
desktop.

Installing Xyce on Mac OS X: Serial version

The Xyce installer is packed in a disk image. Double-click the image and then double-click
the installer package. Follow the on-screen instructions. By default, the Xyce package
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is installed in the /usr/local/ directory. The specific directory in which it is installed will
depend on the version of the Xyce you are installing.

If you wish to change the default installation location, click the “Change Install Location. . . ”
button after accepting the License Agreement. Select the install disk, and then click the
“Choose Folder. . . ” button.

Xyce is currently able to be run only from the command line. To simplify this process,
perform the following. To make the Xyce executable accessible from any directory, the
location of the executable must be added to your path. One method of achieving this is to
edit the .bashrc file located in your root directory. To do this, open the Terminal program,
which is located in the Applications/Utilities folder. You must first find the exact path of the
Xyce executable. If you accepted the default installation location, type:

ls -l /usr/local

Look for a directory that begins with Xyce, for example Xyce-5.3. Then type

cd
touch .bashrc
open -e .bashrc

The .bashrc file will open in the TextEdit program. Add the following line to the file, mod-
ifying it to match the path you found in the first step (the following example is appropriate
for Xyce version 5.3):

export PATH=$PATH:/usr/local/Xyce-5.3/bin

If you specified a different path during the installation, then change the line accordingly.
Save and close the file. Start a new terminal window to properly load the path before trying
to use Xyce.

Finally, to have easy access to the documents, type the following into the Terminal program
(again, modifying the command for the correct path):

cd ~/Desktop
ln -s /usr/local/Xyce-5.3/doc XyceDocs
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This will create an alias on your desktop that links to the Xyce documents folder. You can
copy and/or move the link to any folder you choose.

Note that the next version of Xyce will have a simpler installation process.

Installing Xyce on Mac OS X: Parallel version

Since the parallel version of Xyce requires the presence of Open MPI, the parallel installa-
tion is more complicated than the serial install. Also, the instructions for OS X version 10.7
(Lion) are different from those for version 10.6 (Snow Leopard).

For OS X version 10.7 (Lion), do the following:

• Open the App Store application

• Search (upper right-hand corner) for “Xcode”

• Click the “Free” button, then “Install”. Note that you may need to enter an Apple ID
to download the software. The installation will take some time. You can observe the
progress in Launchpad.

• Once the installation is complete, open Xcode. Then, from the Xcode → Preferences
menu, click the “Download” tab. Under “Components”, click the Install button to the
right of “Command Line Tools”. Quit Xcode when the installation is complete.

For OS X version 10.6 (Snow Leopard), do the following:

• Go to http://developer.apple.com/downloads. You will have to register as an Ap-
ple developer, if you are not already. To register, click the “Join now” link in the lower,
right-hand corner. Scroll to the bottom of the next page and click the “Learn more”
link to register. Click the “Get started” button and proceed through the registration.

• Once you have registered, return to the above link and sign in.

• Use the search box on the left-hand side of the page to search for Xcode

• Find the latest version of Xcode for Snow Leopard (do not download the version for
Lion). At the time of this writing, the correct version is 3.2.6. Download the disk
image.
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• When the download is complete, double-click the image and then double-click the
installer package. Follow the on-screen instructions. Note that, in the “Custom Install”
section, the only item that is required is “UNIX Development”. All the other boxes can
be unchecked.

The next step is to install Open MPI. Note that, once installed in the standard location, it
is difficult to uninstall due to the many items it places in the /usr/local/ directory. Unin-
stallation should not be necessary, though, as it takes up only about 10 MB of disk space
and will not interfere with the operation of other programs. If you need more control of your
Open MPI installations, however, contact the Xyce team for alternate installation methods.

• Go to http://www.open-mpi.org

• Click “Download” on the left-hand side of the page

• On the left-hand side of the page, click “Version 1.4”

• Download version 1.4.5 as a .tar.gz file.

• Open the Terminal program, which is located in the Applications/Utilities folder.

• Navigate to the location of the download, e.g., cd ~/Downloads

• Type the following:

tar -xzf openmpi-1.4.5.tar.gz (Modify the filename, if necessary.)
cd openmpi-1.4.5
./configure --prefix=/usr/local/bin
make all
sudo make install (You will be asked for your password.)

• You may now throw the openmpi-1.4.5.tar.gz file and the openmpi-1.4.5 folder in
the trash.

The final step is to install Xyce, itself. The Xyce installer is packed in a disk image. Double-
click the image and then double-click the installer package. Follow the on-screen instruc-
tions. By default, the Xyce package is installed in the /usr/local/Xyce-OPENMPI-5.3/
directory. (Note that 5.3 is the version number. If you are installing a different version of
Xyce, then the name would reflect that difference.)

If you wish to change the default installation location, click the “Change Install Location. . . ”
button after accepting the License Agreement. Select the install disk, and then click the
“Choose Folder. . . ” button.
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Xyce is currently able to be run only from the command line. To simplify this process,
perform the following. To make the Xyce executable accessible from any directory, the
location of the executable must be added to your path. One method of achieving this is to
edit the .bashrc file located in your root directory. To do this, open the Terminal program,
which is located in the Applications/Utilities folder. You must first find the exact path of the
Xyce executable. If you accepted the default installation location, type:

ls -l /usr/local

Look for a directory that begins with Xyce, for example Xyce-5.3. Then type

cd
touch .bashrc
open -e .bashrc

The .bashrc file will open in the TextEdit program. Add the following line to the file, mod-
ifying it to match the path you found in the first step (the following example is appropriate
for Xyce version 5.3):

export PATH=$PATH:/usr/local/Xyce-OPENMPI-5.3/bin

If you specified a different path during the installation, then change the line accordingly.
Save and close the file. Start a new terminal window to properly load the path before trying
to use Xyce.

Finally, to have easy access to the documents, type the following into the Terminal program
(again, modifying the command for the correct path):

cd ~/Desktop
ln -s /usr/local/Xyce-OPENMPI-5.3/doc XyceDocs

This will create an alias on your desktop that links to the Xyce documents folder. You can
copy and/or move the link to any folder you choose.

If you wish, you may now uninstall Xcode, as it is a large program and is not required to
run Xyce. The procedure varies by the version of the operating system. For OS X version
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10.7 (Lion), press the Xcode icon in Launchpad for a few seconds, then press the X in the
icon’s upper right-hand corner. For Snow Leopard, type the following at the command line:

sudo /Developer/Library/uninstall-devtools mode=all

Note that the next version of Xyce will have a simpler installation process.

Installation Tree

Completing the steps above for your platform will unpack Xyce to the specified directory.
Under the specified installation directory, the following subdirectories will be created:

� bin contains the executable used to start Xyce. The executable name will vary de-
pending on the target operating system and architecture.

– runxyce is the shell script for starting serial Xyce on Unix platforms (including
Mac OS X).

– runxyce.bat is the batch file for starting serial Xyce on Windows.
– xmpirun is the wrapper script for mpirun used for running Xyce in parallel mode.

� doc contains the Xyce Users’ Guide, comprehensive Reference Guide, and Release
Notes. Read these for more information about this release and for detailed instruc-
tions on how to use Xyce.

� lib contains configuration files, libraries, and metadata for Xyce.

� test contains sample netlists and verification tools.

Uninstalling Xyce

Sandia Capacity Systems

For these platforms, Xyce comes with no special uninstall script.

The Xyce installation process simply unpacks a number of files into the directory you iden-
tify to the setup program. Removing those files uninstalls Xyce. If you followed our recom-
mendation and installed to a completely separate directory like /home/myname/Xyce-5.3,
uninstallation is as simple as removing the entire directory with the following command:

rm -rf /home/myname/Xyce-5.3
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Red Hat Enterprise Linux 5

For Red Hat Enterprise Linux 5, Xyce is uninstalled using the command

sudo yum remove <package name>

where <package name> is the package you want to remove. For example, if you are trying
to remove the full version of serial Xyce, you would use

sudo yum remove Xyce

To remove the parallel version,

sudo yum remove Xyce-OPENMPI

Unfortunately, there is no easy way to uninstall all of the dependent packages that were
installed when Xyce-OPENMPI was installed using the Red Hat Enterprise Linux 5 version
of yum, and this has to be done manually. To do a complete uninstall, it is necessary to
keep a log of all the libraries that were pulled in as dependencies when Xyce-OPENMPI
was installed, and use yum to remove each of them after removing Xyce-OPENMPI.

Red Hat Enterprise Linux 6

For Red Hat Enterprise Linux 6, Xyce may also be uninstalled with a simple yum remove
command as for RHEL5. This will remove only the Xyce package, not any of the depen-
dent libraries that were installed at the same time. A complete uninstall of all dependent
packages may be done more simply in RHEL6 than in RHEL5 using the transaction history
feature. To do a complete uninstall of the full version of serial Xyce, for example, one first
looks up a transaction history for the Xyce package:

sudo yum history package-list Xyce-5.3.0

This will respond with a table of transaction history. The first column of this table is a
transaction id that records the entire install process for that operation. So for example, one
might see as the first two lines:

ID | Action(s) | Package

--------------------------------------------------------------------

5 | Install | Xyce-5.3.0-1.x86_64
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This installation of Xyce was transaction 5. To completely undo the installation (including
all dependent libraries that were installed at the same time) one need only run the following
yum command: sudo yum history undo 5

Microsoft Windows

For Microsoft Windows, uninstall Xyce using the Control Panel; or, from the Start Menu,
select the Xyce → Uninstall menu option.

Mac OS X

There is no special uninstall program for Xyce on Mac OS X. To uninstall the serial version
of Xyce, assuming the standard installation path, type the following at the command line
(using the Terminal program)

sudo rm -rf /usr/local/Xyce-5.3

or, for the parallel version, type

sudo rm -rf /usr/local/Xyce-OPENMPI-5.3

Enter your password to continue. Note that you may need to modify the path to the pro-
gram. See the Installation section for more information. Also note that using sudo with rm
can have severe effects on the operating system (which is why there is password verifica-
tion), so be sure to type the path correctly.

If you installed the parallel version of Xyce, you may also want to uninstall Xcode. The
procedure varies by the version of the operating system. For OS X version 10.7 (Lion),
press the Xcode icon in Launchpad for a few seconds, then press the X in the icon’s upper
right-hand corner. For Snow Leopard, type the following at the command line:

sudo /Developer/Library/uninstall-devtools mode=all

As mentioned in the installation section, it is advised to not try to uininstall Open MPI if you
used the standard installation procedure.

2.2 Running Xyce
While it is possible to connect Xyce to graphical interfaces, such as gEDA [5], Xyce is
not provided with any graphical user interface, and it is primarily used as a command-
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line-only program. This is the case across all supported platforms, including traditionally
“GUI-centered” platforms such as Mac OS X and Microsoft Windows.

This section only describes how Xyce is run from the command line, for both serial and
MPI parallel simulations.

Command Line Simulation

Running Xyce from the command line is straightforward. The scripts xmpirun and runxyce
set up the runtime environment and execute Xyce. Depending on whether you are using a
version compiled with MPI support or a serial version, there are two ways to begin running
Xyce:

� Running serial Xyce:

> runxyce [options] <netlist filename>

� Running Xyce in parallel:

> xmpirun -np <# procs> [options] <netlist filename>

where [options] are the command line arguments for Xyce. For example, to log output to
a file named sample.log type:

> runxyce -l sample.log <netlist filename>

The next example runs parallel Xyce on four processors and places the results into a
comma separated value file named results.csv:

> xmpirun -np 4 -delim COMMA -o results.csv <netlist filename>

While Xyce is running, the progress of the simulation is output to the command line window.

The above examples assume that <netlist filename> is either in the current working
directory, or includes the path (full or relative) to the netlist file. Enclose the filename in
quotation marks (” ”) if the path contains spaces. Help is accessible with the -h option.

For MPI runs, [options] may also include command line arguments to mpirun. Consult the
documentation installed with MPI on your platform for more details on MPI options. The
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-np <# procs> denotes the number of processors to use for the simulation. NOTE: It is
critical that the number of processors used is less than the number of devices and voltage
nodes in the netlist. The appropriate script used to run Xyce for each supported platform
is listed in the Table 2.1.

Architecture OS Serial Executable MPI Executable

x86-64 OSX
runxyce xmpirunx86 and x86-64 Linux

x86 FreeBSD

x86
Microsoft
Windows

runxyce.bat not available

Table 2.1. Platform scripts for running Xyce.

Users of Sandia HPC platforms (TLCC, Glory, Red Sky) must set several environment
variables to run Xyce. A system module is available to handle this. To load the xyce
module, use the command:

module load xyce

Consult the system documentation for help with submitting jobs on these platforms

https://computing.sandia.gov

Guidance for Running Xyce in Parallel

The basic mechanics of running Xyce in parallel has been discussed above. For general
guidance regarding solver options, partitioning options, and other parallel issues, refer
to Chapter 10. Distributed memory circuit simulation still contains a number of research
issues, so obtaining an optimal simulation in parallel is a bit of an art.

Command Line Options

Xyce supports a handful of command line options that must be given before the netlist
filename. The core options are listed in Table 2.2.
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Argument Description Usage Default

-h Help option. Prints usage and

exits.
-h -

-v Prints the version banner and

exits.
-v -

-delim Set the output file field

delimiter.

-delim

<TAB|COMMA|string>
-

-o Place the results into specified

file.
-o <file> -

-l Place the log output into

specified file.
-l <file> -

-r Output a binary rawfile. -r <file> -

-a Use with -r to output a

readable (ascii) rawfile.
-r <file> -a -

-nox Use the NOX nonlinear solver. -nox <ON|OFF> on

-info Output information on

parameters.

-info

[device prefix]
[level] [ON|OFF]

-

-linsolv Set the linear solver. -linsolv <KLU|

SUPERLU|AZTECOO>

klu(serial) and

aztecoo(parallel)

-param
Print a terse summary of

model and/or device
parameters.

-param

[<device prefix>
[<level>
[<INST|MOD>] ] ]

-

-syntax Check netlist syntax and exit. -syntax -

-norun Netlist syntax and topology

and exit.
-norun -

-maxord Maximum time integration

order.
-maxord <1..5> -

-gui GUI file output. -gui -

-jacobian test Jacobian matrix diagnostic. -jacobian_test -

Table 2.2: List of Xyce command line arguments.

While these options are intended for general use, others may exist for new features that
are disabled by default, and older features that are no longer supported. See the Xyce
Reference Guide for a comprehensive list that also includes trial and deprecated options.
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3. Simulation Examples
with Xyce

Chapter Overview
This chapter provides several simple examples of Xyce usage. An example circuit is pro-
vided for each available analysis type.

� Section 3.1, Example Circuit Construction

� Section 3.2, DC Sweep Analysis

� Section 3.3, Transient Analysis
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3.1 Example Circuit Construction

This section describes how to use Xyce to create the simple diode clipper circuit shown in
Figure 3.2.

While a schematic edit and capture capability is under development, Xyce currently only
supports circuit creation via netlist editing. Xyce supports most of the standard netlist
entries common to Berkeley SPICE 3F5 and Orcad PSpice. For users who are familiar
with PSpice netlists, the differences between PSpice and Xyce netlists are listed in the
Xyce Reference Guide [3] .

Example: diode clipper circuit

Using a plain text editor of your choice (e.g. vi, emacs, notepad, but not a word processor
like OpenOffice or Microsoft Word), create a file containing the netlist of Figure 3.1. We
will assume for the rest of this chapter that the file you create is called clipper.cir

The netlist in Figure 3.1 illustrates some of the syntax of a netlist input file. Netlists begin
with a title (e.g. “Diode Clipper Circuit”), support comments (lines beginning with the
“*” character), devices, model definitions and the “.END” statement.

The diode clipper circuit contains a number of two-terminal devices (diodes, resistors, and
capacitors), each of which specifies two connecting nodes and either a model (for the
diode) or a value (resistance or capacitance). The netlist of Figure 3.1 describes the circuit
in the schematic of Figure 3.2

This netlist file is not yet complete and will not run properly using Xyce (see Section 2.2
for instructions on running Xyce) as it lacks an analysis statement. As you proceed in this
chapter, you will see how to add the appropriate analysis statement and run the clipper
circuit.
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Diode Clipper Circuit
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 0V
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3.1. Diode clipper circuit netlist.
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Figure 3.2. Schematic of diode clipper circuit with DC and tran-
sient voltage sources.

3.2 DC Sweep Analysis

In this section an example is given of DC sweep analysis using Xyce. The DC response
of the clipper circuit is obtained by sweeping the DC voltage source (Vin) from -10 to 15
volts in 1 volt steps. For more details about DC analysis see Chapter 7.2 of this manual or
the Xyce Reference Guide [3] .
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Example: DC sweep analysis

To set up and run a DC sweep analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file (clipper.cir) using a standard text editor
(e.g. VI, Emacs, Notepad, etc.).

2. Enter the analysis control statement in the netlist:

.DC VIN -10 15 1

3. Enter the output control statement:

.PRINT DC V(3) V(2) V(4)

4. Save the netlist file and run Xyce on the circuit. For example, to run serial Xyce:

> runxyce clipper.cir

5. Open the results file (clipper.cir.prn) and examine (or plot) the output voltages that
were calculated for nodes 3 (Vin), 2 and 4 (Out). Figure 3.4 shows the output plotted
as a function of the swept variable Vin.

Figure 3.4. DC sweep voltages at Vin, node 2 and Vout.
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Diode Clipper Circuit with DC sweep analysis statement
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 0V
* Analysis Command
.DC VIN -10 15 1
* Output
.PRINT DC V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3.3. Diode clipper circuit netlist for DC sweep analysis.
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3.3 Transient Analysis
This section contains an example of transient analysis in Xyce. In this example the DC
clipper circuit of the previous section has been modified so that the input voltage source
(Vin) is a time-dependent sinusoidal input source. The frequency of Vin is 1 kHz, and has
an amplitude of 10 volts. For more details about transient analysis see Chapter 7.3 of this
manual, or see the Xyce Reference Guide [3] .

Example: transient analysis

To set up and run a transient analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file file (clipper.cir) using a standard text editor
(e.g. VI, Emacs, Notepad, etc.).

2. If you added DC analysis and output statements in the previous example (Figure 3.4),
remove them.

3. Enter the analysis control in the netlist:

.TRAN 2ns 2ms

4. Enter the output control statement:

.PRINT TRAN V(3) V(2) V(4)

5. Modify the input voltage source (Vin) to generate the sinusoidal input signal:

VIN 3 0 SIN(0V 10V 1kHz)

6. At this point, the netlist should look similar to the netlist in Figure 3.5. Save the netlist
file and run Xyce on the circuit. For example, to run serial Xyce:

> runxyce clipper.cir

7. Open the results file and examine (or plot) the output voltages for nodes 3 (Vin), 2
and 4 (Out). The plot in Figure 3.6 shows the output plotted as a function of time.

The modified netlist is shown in Figure 3.5, and the corresponding results in Figure 3.6.
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Diode Clipper Circuit with transient analysis statement
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3.5. Diode clipper circuit netlist for transient analysis.
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Figure 3.6. Sinusoidal input signal and clipped outputs.
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4. Netlist Basics

Chapter Overview
This chapter contains introductory material on netlist syntax and usage. Sections include:

� Section 4.1 General Overview

� Section 4.2 Devices Available for Simulation

� Section 4.3 Parameters and Expressions
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4.1 General Overview

Introduction

Using a netlist to describe a circuit for Xyce is the primary method for running a circuit
simulation. Netlist support within Xyce largely conforms to that used by Berkeley SPICE
3F5 with several new options for controlling functionality unique to Xyce. In a netlist, the
circuit is described by a set of element lines which define the circuit elements, their values,
the circuit topology (i.e. the connection of the circuit elements), and a variety of control
options for the simulation. The first line in the netlist file must be a title and the last line
must be “.END”. Between these two constraints, the order of the statements is irrelevant.

Nodes

Nodes and elements form the foundation for the circuit topology. Each node represents a
point in the circuit that is connected to the leads of multiple elements (devices). Each lead
of every element is connected to a node, and each node is connected to multiple element
leads.

A node is simply a named point in the circuit. The naming of normal nodes is only known
within the level of circuit hierarchy where they appear; normal nodes defined in the main
circuit are not visible to subcircuits, nor are nodes defined in a subcircuit visible to the top-
level circuit. Nodes can be passed into subcircuits through an argument list, and in this
case subcircuits are given limited access to nodes from the upper-level circuit.

Global Nodes

For cases where a particular node is used widely throughout various subcircuits it can be
more convenient to use a global node, which is referenced by the same name throughout
the circuit. This is often the case for power rails such as VDD or VSS.

Global nodes start with the prefix $G. Examples of global node names would be: $G VDD
or $G1. There is no declaration required for nodes or global nodes. They are declared
implicitly by appearing in element lines.
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Elements

An element line, for which the format is determined by the specific element type, defines
each circuit element instance. The general format is given by:

<type><name> <node information> <element information...>

The <type> must be a letter (A through Z) and the <name> follows immediately. For ex-
ample, RARESISTOR specifies a device of type “R” (for “Resistor”) with a name ARESISTOR.
Nodes are separated by spaces, and additional element information required by the device
is given after the node list as described in the Netlist Reference section of the Xyce Refer-
ence Guide [3] . Xyce ignores character case when reading a netlist such that RARESISTOR
is equivalent to raresistor. The only exception to this case insensitivity occurs when in-
cluding external files in a netlist where the filename specified in the netlist must have the
same case as the actual filename.

A number field may be an integer or a floating-point value. Either one may be followed by
one of the following scaling factors:

Symbol Equivalent Value

T 1012

G 109

Meg 106

K 103

mil 25.4−6

m 10−3

u (µ) 10−6

n 10−9

p 10−12

f 10−15

Node information is given in terms of node names, which are arbitrary character strings.
The only requirement is that the ground node is named ’0’. There are some restrictions on
the circuit topology:
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� There can be no loop of voltage sources and/or inductors.

� There can be no cut-set of current sources and/or capacitors.

In addition to these two requirements, the following additional topology constraints are
highly recommended:

� Every node has a DC path to ground.

� Every node has at least two connections (with the exception of unterminated trans-
mission lines and MOSFET substrate nodes).

While Xyce can theoretically handle netlists which violate the above two constraints, such
topologies are typically the result of human error in creating a netlist file and will often lead
to convergence failures. See Chapter 14 of this guide for more on this topic.

The following line provides an example of an element line that defines a resistor between
nodes 1 and 3 with a resistance value of 10kΩ.

Example: RARESISTOR 1 3 10K

Title, Comments and End

The first line of the netlist is the title line of the netlist. This line is treated as a comment
even if it does not begin with an asterisk. It is a common mistake to forget the meaning of
this first line and begin the circuit elements on the first line; doing so will probably result in
a parsing error.

Example: Test RLC Circuit

The “.END” line must be the last line in the netlist.

Example: .END

Comments are supported in netlists and are indicated by placing an asterisk at the be-
ginning of the comment line. They may occur anywhere in the netlist but they must be
at the beginning of a line. Xyce also supports in-line comments. An in-line comment is
designated by a semicolon and may occur on any line. Everything after the semicolon is
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taken as a comment and ignored. Any line that begins with leading white space is also
considered to be a comment.

Example: * This is a netlist comment.

Example: WRONG:.DC .... * This type of in-line comment is not supported.

Example: .DC .... ; This type of in-line comment is supported.

Continuation Lines

Any line that begins with a + symbol is a continuation line. Its contents are appended to
those of the previous line. If the previous line or lines were comments, the continuation line
is appended to the first non-comment line preceding it.

Netlist Commands

Command elements are used to describe the analysis being defined by the netlist. Exam-
ples include analysis types, initial conditions, device models and output control. The Xyce
Reference Guide [3] contains a reference for these commands.

Example: .PRINT TRAN V(Vout)

Analog Devices

The analog devices supported include most of the standard circuit components normally
found in circuit simulators such as SPICE 3F5, PSpice, etc., plus several Sandia specific
devices.

Example: D CR303 N 0065 0 D159700

To find out more about analog devices see the Xyce Reference Guide [3] .
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4.2 Devices Available for Simulation
This section describes the different types of analog devices supported in Xyce. These
include standard analog devices, sources (dependent and independent) and subcircuits.
Each device description has the following information:

� A description and an example of the netlist syntax

� The corresponding model types and descriptions, where applicable

� The corresponding lists of model parameters and descriptions, where applicable

� The associated circuit diagram and model equations, as necessary

These analog devices include all of the standard circuit components needed for most ana-
log circuits. User defined models may also be implemented using the .MODEL (model
definition) statement and macromodels as subcircuits using the .SUBCKT (subcircuit) state-
ment.

Analog Devices

Xyce supports many analog devices, including sources, subcircuits and behavioral mod-
els. The devices are classified into device types, each of which can have one or more
model types. For example, the BJT device type has two model types: NPN and PNP.

The device element statements in the netlist always start with the name of the individual
device instance. The first letter of the name determines the device type. The format of
the following information depends on the device type and its parameters. The Device Type
summary table, Table 4.1, lists all of the analog devices supported by Xyce. Each standard
device is then described in more detail in the following sections. Except where noted, the
devices are based upon those found in [6].

Table 4.1 is a summary of the analog device types and the form of their netlist formats. For
a more complete description of the syntax for supported devices, see the Xyce Reference
Guide [3] .
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Device Type Designator

Letter
Typical Netlist Format

Nonlinear Dependent

Source (B Source)
B

B<name> <+ node> <- node>

+ <I or V>={<expression>}

Capacitor C
C<name> <+ node> <- node> [model name] <value>

+ [IC=<initial value>]

Diode D
D<name> <anode node> <cathode node>

+ <model name> [area value]
Voltage Controlled

Voltage Source
E

E<name> <+ node> <- node> <+ controlling node>

+ <- controlling node> <gain>
Current Controlled

Current Source
F

F<name> <+ node> <- node>

+ <controlling V device name> <gain>
Voltage Controlled

Current Source
G

G<name> <+ node> <- node> <+ controlling node>

+ <- controlling node> <transconductance>
Current Controlled

Voltage Source
H

H<name> <+ node> <- node>

+ <controlling V device name> <gain>

Independent Current

Source
I

I<name> <+ node> <- node> [[DC] <value>]

+ [AC [magnitude value [phase value] ] ]
+ [transient specification]

Mutual Inductor K
K<name> <inductor 1> [<ind. n>*]

+ <linear coupling or model>

Inductor L
L<name> <+ node> <- node> [model name] <value>

+ [IC=<initial value>]

JFET J
J<name> <drain node> <gate node> <source node>

+ <model name> [area value]

MOSFET M
M<name> <drain node> <gate node> <source node>

+ <bulk/substrate node> [SOI node(s)]
+ <model name> [common model parameter]*

Bipolar Junction

Transistor (BJT)
Q

Q<name> <collector node> <base node>

+ <emitter node> [substrate node]
+ <model name> [area value]

Resistor R
R<name> <+ node> <- node> [model name] <value>

+ [L=<length>] [W=<width>]

Voltage Controlled

Switch
S

S<name> <+ switch node> <- switch node>

+ <+ controlling node> <- controlling node>
+ <model name>
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Device Type Designator

Letter
Typical Netlist Format

Transmission Line T
T<name> <A port + node> <A port - node>

+ <B port + node> <B port - node>
+ <ideal specification>

Independent Voltage

Source
V

V<name> <+ node> <- node> [[DC] <value>]

+ [AC [magnitude value [phase value] ] ]
+ [transient specification]

Subcircuit X
X<name> [node]* <subcircuit name>

+ [PARAMS:[<name>=<value>]*]
Current Controlled

Switch
W

W<name> <+ switch node> <- switch node>

+ <controlling V device name> <model name>
Digital Devices Y<name> Y<name> [node]* <model name>

PDE Devices YPDE YPDE <name> [node]* <model name>

ROM Devices YROM YROM <name> <+ node> <- node>

+ BASE_FILENAME=<filename>

+ [MASK_VARS=<true/false>]

+ [USE_PORT_DESCRIPTION=<0/1>]

MESFET Z
Z<name> <drain node> <gate node> <source node>

+ <model name> [area value]
Table 4.1: Analog Device Quick Reference.

4.3 Parameters and Expressions
In addition to explicit values, the user may use parameters and expressions to symbolize
numeric values in the circuit design.

Parameters

A parameter is a symbolic name that represents a numeric value. Parameters must start
with a letter or underscore. The characters after the first can be letter, underscore, or digits.
Once you have defined a parameter (declared its name and given it a value) at a particular
level in the circuit hierarchy, you can use it to represent circuit values at that level or any
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level directly beneath it in the circuit hierarchy. One way that you can use parameters is to
apply the same value to multiple part instances.

How to Declare and Use Parameters

In order to use a parameter in a circuit, one must:

� define the parameter using a .PARAM statement within a netlist

� replace an explicit value with the parameter in the circuit

Note that Xyce reserves several keywords that may not be used as parameter names.
These are:

� Time

� Vt

� Temp

� GMIN

While these are reserved keywords an not available for use as parameter names, only Time
is predefined in this release of Xyce.

Example: Declaring a parameter

1. Locate the level in the circuit hierarchy at which the .PARAM statement declaring a
parameter will be placed. (Note: a parameter that can be used anywhere in the
netlist can be declared by placing the .PARAM statement at the top-most level of the
circuit.)

2. Name the parameter and give it a value. The value can be numeric or given by an
expression:

.SUBCKT subckt1 n1 n2 n3

.PARAM res = 100
*
* other netlist statements here
*
.ENDS
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3. Note: the parameter res can be used anywhere within the subcircuit subckt1 includ-
ing subcircuits defined within it, but cannot be used outside of subckt1.

Example: Using a parameter in the circuit

1. Find the numeric value that is to be replaced by a parameter: a device instance
parameter value, model parameter value, etc. The value being replaced must be
accessible with the current hierarchy level.

2. Replace the numeric value with the parameter name contained within braces ({}) as
in:

R1 1 2 {res}

Limitations on parameter definitions

There is considerable flexibility in the use of parameters, as described in section 6, analog
behavioral modelling. Parameters can be set to expressions containing other parameters,
and can be passed down the heirarchy into subcircuits. Fundamentally, however, parame-
ters are constants that are evaluated at the beginning of a run. All terms in the expression
defining the parameter must therefore be constants known at the beginning of the run. It
is not legal to use any time-dependent expressions in parameter declarations (either by
including voltage nodes or currents, or by including reference to the variable TIME).

If a parameter is defined within a given scope then it can be used in any expression within
that scope. The only limitation on ordering is for the use of a parameter in an expression
that defines the value of another parameter. In that case, all parameters used in the expres-
sion must be defined before being used to define another parameter. So,in the following
example:

R1 1 0 {B+C} ; OK because the expression is not used to define a param
.PARAM A=3
.PARAM B={A+1} ; OK because A is defined above
.PARAM D={C+2} ; Illegal because C is not yet known
.PARAM C=2
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Global Parameters

A normal parameter that is defined at the main circuit level will have global scope. Such
parameter suffer from limitations that (1) they are constant during the simulation, and (2)
the parameter may redefined within a subcircuit, which would change the value in the
subcircuit and below. Global parameters address these limitations.

A global parameter differs from a normal parameter in that is can only be defined at the
main circuit level, and it is allowed to change during a simulation. It acts like a variable
rather than a constant during the simulation. An example of some global parameter usages
are:

.param dTdt=100

.global_param T={27+dTdt*time}
R1 1 2 RMOD TEMP={T}

or . .

.global_param T=27
R1 1 2 RMOD TEMP={T}
C1 1 2 CMOD TEMP={T}
.step T 20 50 10

In these examples, T is used to represent an environmental variable that changes.

Note that normal parameters may be used in expressions that define global parameters,
but the the opposite is not allowed.

Expressions

In Xyce, an expression is a mathematical relationship that may be used any place one
would use a number (numeric or boolean). Except in the case of expressions used in
analog behavioral modeling sources (see Chapter 6) Xyce evaluates the expression to a
value when it reads in the circuit netlist, not each time its value is needed. It is therefore
necessary that all terms in an expression be known at the beginning of the run.

To use an expression in a circuit netlist:

1. Locate the value to be replaced (component, model parameter, etc.).
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2. Substitute the value with an expression utilizing the {} syntax:

{expression}

where expression can contain any of the following:

� available operators from those in Table 4.2

� included functions from those in Table 4.3, Table 4.5, and Table 4.6

� user-defined functions

� user-defined parameters that are within scope

� literal operands

The braces ({}) instruct Xyce to evaluate the expression and use the resulting value.

Additional time-dependent constructs are available in expressions used in analog
behavioral modeling sources (see Chapter 6).

Example: Using an expression

Scaling the DC voltage of a 12V independent voltage source, designated VF, by some
factor can be accomplished by the following netlist statements (in this example the factor
is 1.5):

.PARAM FACTORV=1.5
VF 3 4 {FACTORV*12}

Xyce will evaluate the expression to 12 ∗ 1.5 or 18 volts.

1Logical and relational operators are used only with the IF() function.
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Class of
operator Operator Meaning

arithmetic + addition or string concatenation

- subtraction

* multiplication

/ division

** exponentiation

logical1 ~ unary NOT

| boolean OR

^ boolean XOR

& boolean AND

relational == equality

!= non-equality

> greater-than

>= greater-than or equal

< less-than

<= less-than or equal

Table 4.2. Expression operators
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Function Meaning Explanation

ABS(x) |x| absolute value of x

AGAUSS(µ,α,n) µ
Mean of random variable with probability
density function p(z) given by

p(z) =
1√

2πσ2
e−

(z−µ)2

2σ2

where σ = α/n

DDT(x) d
dtx(t) time derivative of x

DDX(f(x),x) ∂
∂xf(x) partial derivative of f(x) with respect to x

IF(t,x,y) x if t is true,
t is an expression using the relational
operators in Table 4.2

y otherwise

INT(x) sgn(x)b|x|c integer part of the real variable x

LIMIT(x,y,z) y if x < y

x if y < x < z x limited to range y to z

z if x > z

LIMIT(x,y) x + y
upper limit of the random variable x with
probability mass function p(z) given by:

p(z = x + y) = 1/2

p(z = x− y) = 1/2

M(x) |x| absolute value of x

MIN(x,y) min(x, y) minimum of x and y

MAX(x,y) max(x, y) maximum of x and y

PWR(x,y) xy x raised to y power

POW(x,y) xy x raised to y power

PWRS(x,y) xy if x > 0

0 if x = 0 sign corrected x raised to y power

−(−x)y if x < 0

Table 4.3. Arithmetic Functions in Expressions
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Function Meaning Explanation

RAND() 0 < result < 1 random constant number between 0 and 1

SDT(x)
∫

x(t)dt time integral of x

SGN(x) +1 if x > 0

0 if x = 0 sign value of x

-1 if x < 0

SIGN(x,y) sgn(y)|x| Sign of y times absolute value of x

STP(x) 1 if x > 0 step function

0 otherwise

SQRT(x)
√

x square root of x

TABLE(x,y,z,*) f(x) where f(y) = z
piecewise linear interpolation, multiple (y,z)
pairs can be specified

URAMP(x) x if x > 0 ramp function

0 otherwise

Table 4.4. Arithmetic Functions in Expressions (cont’d)
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Function Meaning Explanation

ACOS(x) arccos(x) result in radians

ACOSH(x) cosh−1(x) hyperbolic arccosine of x

ARCTAN(x) arctan(x) result in radians

ASIN(x) arcsin(x) result in radians

ASINH(x) sinh−1(x) hyperbolic arcsine of x

ATAN(x) arctan(x) result in radians

ATANH(x) tanh−1(x) hyperbolic arctangent of x

ATAN2(x,y) arctan(x/y) result in radians

COS(x) cos(x) x in radians

COSH(x) cosh(x) hyperbolic cosine of x

EXP(x) ex e to the x power

LN(x) ln(x) log base e

LOG(x) log(x) log base 10

LOG10(x) log(x) log base 10

SIN(x) sin(x) x in radians

SINH(x) sinh(x) hyperbolic sine of x

TAN(x) tan(x) x in radians

TANH(x) tanh(x) hyperbolic tangent of x

Table 4.5. Exponential, Logarithmic, and Trigonometric Func-
tions in Expressions
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Function Explanation

SPICE EXP(V1,V2,TD1,TAU1,TD2,TAU2) SPICE style transient exponential

V1 = initial value

V2 = pulsed value

TD1 = rise delay time

TAU1 = rise time constant

TD2 = fall delay time

TAU2 = fall time constant

SPICE PULSE(V1,V2,TD,TR,TF,PW,PER) SPICE style transient pulse

V1 = initial value

V2 = pulsed value

TD = delay

TR = rise time

TF = fall time

PW = pulse width

PER = period

SPICE SFFM(V0,VA,FC,MDI,FS) SPICE style transient single frequency FM

V0 = offset

VA = amplitude

FC = carrier frequency

MDI = modulation index

FS = signal frequency

SPICE SIN(V0,VA,FREQ,TD,THETA) SPICE style transient sine wave

V0 = offset

VA = amplitude

FREQ = frequency (hz)

TD = delay

THETA = damping factor

Table 4.6. SPICE Compatibility Functions in Expressions
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5. Working with .MODEL
Statements and Subcircuit
Models

Chapter Overview
This chapter contains model ideas and a summary of the ways to create and modify mod-
els. Sections include:

� Section 5.1, Definition of a Model

� Section 5.2, Model Organization

69



XyceTM Users’ Guide Working with .MODEL Statements and Subcircuit Models

5.1 Definition of a Model

A model describes the electrical performance of a part, such as a specific vendor’s version
of a 2N2222 transistor. To simulate a part requires specification of simulation properties.
These properties define the model of the part.

Depending on the given device type and the requirements of the circuit design, a model is
specified using a model parameter set, a subcircuit netlist, or both.

In general, model parameter sets define the parameters used in ideal models of specific
device types, and subcircuit netlists allow the user to combine ideal device models to sim-
ulate more complex effects. For example, one could simulate a bipolar transistor using the
Xyce BJT device by specifying model parameters extracted to fit the simulation behavior to
the behavior of the part used, or one could develop a subcircuit macro-model of a capacitor
that adds effects like lead inductance and resistance to the basic capacitor device.

Both methods of defining a model use a netlist format, with precise syntax rules as de-
scribed below.

Defining models using model parameters

Xyce currently has no built-in part models. However, models can be defined for a device by
changing some or all of the model parameters from their defaults via the .MODEL statement.
For example:

M5 3 2 1 0 MLOAD1
.MODEL MLOAD1 NMOS (LEVEL=3 VTO=0.5 CJ=0.025pF)

This example defines a MOSFET device M5 that is an instance of a part described by
the model parameter set MLOAD1. The MLOAD1 parameter set is defined in the .MODEL
statement.

Most device types in Xyce support some form of model parameters. Consult the Xyce
Reference Guide [3] for the model parameters supported by each device type.
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Defining models using subcircuit netlists

In Xyce, models may also be defined using the subcircuit syntax: .SUBCKT/.ENDS. This
syntax includes:

� netlists to define the configuration and function of the part.

� variable input parameters to modify the model.

See Figure 5.1 for an example.

****other devices
X5 5 6 7 8 l3dsc1 PARAMS: ScaleFac=2.0
X6 9 10 11 12 l3dsc1
****more netlist commands

*** SUBCIRCUIT: l3dsc1
*** Parasitic Model: microstrip
*** Only one segment
.SUBCKT l3dsc1 1 3 2 4 PARAMS: ScaleFac=1.0
C01 1 0 4.540e-12
RG01 1 0 7.816e+03
L1 1 5 3.718e-08
R1 5 2 4.300e-01
C1 2 0 4.540e-12
RG1 2 0 7.816e+03
C02 3 0 4.540e-12
RG02 3 0 7.816e+03
L2 3 6 3.668e-08
R2 6 4 4.184e-01
C2 4 0 4.540e-12
RG2 4 0 7.816e+03
CM012 1 3 5.288e-13
KM12 L1 L2 2.229e-01
CM12 2 4 {5.288e-13*ScaleFac}
.ENDS

Figure 5.1. Example subcircuit model.
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In this example, a subcircuit model called l3dsc1 implementing one part of a microstrip
transmission line is defined between the .SUBCKT/.ENDS lines, and two different instances
of the subcircuit are used in the X lines. This somewhat artificial example shows how input
parameters are used; the last capacitor in the subcircuit is scaled by the input parameter
ScaleFac. If input parameters are not specified on the X line (as in the case of device X6),
then the default values specified on the .SUBCKT line are used. Non-default values are
specified on the X line using the PARAMS: keyword. For precise syntax consult the Xyce
Reference Guide [3] .

Subcircuit Hierarchy

Xyce supports the definition of subcircuits within other subcircuits. Each subcircuit defini-
tion introduces a new level in the circuit hierarchy with the top level being the main circuit. If
a second level is defined, it is composed of the subcircuits in the main circuit and each sub-
sequent level is composed of the subcircuits contained in the previous level. A subcircuit
may also contain other definitions such as models via the .MODEL statement, parameters
via the .PARAM statement, and functions via the .FUNC statement.

In this context, the subcircuit defines the “scope” for the definitions it contains. That is,
the definitions contained within a subcircuit can be used within that subcircuit and/or within
any subcircuit it contains. Any definitions occurring in the main circuit have global scope
and can be used anywhere in the circuit. A name, such as a model, parameter, function or
subcircuit name, occurring in a definition at one level of a circuit hierarchy can be redefined
at any lower level contained directly by the subcircuit. In this case, the new definition
applies at the given level and those below.

In the following example, the model named MOD1 can be used in subcircuits SUB1 and SUB2
but not in the subcircuit SUB3. The parameter P1 has a value of 10 in subcircuit SUB1 and a
value of 20 in subcircuit SUB2.
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.SUBCKT SUB1 1 2 3 4

.MODEL MOD1 NMOS(LEVEL=2)

.PARAM P1=10
*
* subcircuit devices omitted for brevity
*
.SUBCKT SUB2 1 3 2 4
.PARAM P1=20
*
* subcircuit devices omitted for brevity
*
.ENDS
.ENDS

.SUBCKT SUB3 1 2 3 4
*
* subcircuit devices omitted for brevity
*
.ENDS

Figure 5.2. Example subcircuit model.
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5.2 Model Organization
While it is always possible to make a self-contained netlist in which all models for all
parts are included along with the circuit definition, it is often more convenient to orga-
nize frequently-used models into separate model libraries. Xyce provides a very simple
mechanism that allows this organization. Models are simply collected into model library
files, and then accessed by netlists as needed by insertion of an .INCLUDE directive. This
section describes the process in detail.

Model libraries

Device model and subcircuit definitions may be organized into model libraries. These
libraries are text files (similar to netlist files) that have one or more model definitions. Many
users choose to give model library files names that end with .lib, but the file may be
named using any convention the user chooses.

In general, most users create model libraries files that typically include similar model types.
In these files, the header comments describe the models therein.

Model library configuration

In Xyce, model libraries are used by inserting a .INCLUDE statement into a netlist. Once
a file is included, its contents are available to the netlist just as if the entire contents had
been inserted directly into the netlist.

As an example, one might create the following model library file called bjtmodels.lib,
containing .MODEL statements for common types of bipolar junction transistors:

*bjtmodels.lib
* Bipolar transistor models
.MODEL Q2N2222 NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=5 Ne=1.307
+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1
+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75
+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

.MODEL 2N3700 NPN (IS=17.2E-15 BF=100)

.MODEL 2N2907A PNP (IS=1.E-12 BF=100)
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The models Q2N2222, 2N3700 and 2N2907A could then be used in a netlist by including the
bjtmodels.lib file.

.INCLUDE "bjtmodels.lib"
Q1 1 2 3 Q2N2222
Q2 5 6 7 2N3700
Q3 8 9 10 2N2907A
*other netlist entries
.END

Because the contents of an included file are simply inserted into the netlist at the point
where the .INCLUDE statement appears, the scoping rules for .INCLUDE statements is the
same as for other types of definitions as outlined in the preceding section. Note that the
path to the library file is assumed to be relative to the execution directory, but absolute
pathnames are permissible. Note also that the entire file name, including its “extension”
must be specified. There is no assumed default extension.
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5.3 Model Interpolation
Modelling of thermal effects is handled in a variety of ways, depending on the device type.
For simple devices this is by linear and quadratic correction factors. For the diodes this is by
self contained temperature correction equations, which have been verified to be accurate.
For complex semiconductor devices the only accurate method is through interpolation of
models measured at multiple nominal temperatures (TNOM).

Interpolation of models is accessed through the model parameter TEMPMODEL in the
models that support this capability. In the netlist, a base model is specified, and is followed
by multiple models at other temperatures. This is best shown by example:

Jtest 1a 2a 3 SA2108 TEMP= 40
*
.MODEL SA2108 PJF ( TEMPMODEL=QUADRATIC TNOM = -55
+ LEVEL=2 BETA = 0.00365 VTO = -1.9360 PB = 0.304
+ LAMBDA = 0.00286 DELTA = 0.2540 THETA = 0.0
+ IS = 1.393E-10 RD = 0.0 RS = 1e-3)

.MODEL SA2108 PJF ( TEMPMODEL=QUADRATIC TNOM = 27
+ LEVEL=2 BETA= 0.003130 VTO = -1.9966 PB = 1.046
+ LAMBDA = 0.00401 DELTA = 0.578; THETA = 0;
+ IS = 1.393E-10 RS = 1e-3)
*
.MODEL SA2108 PJF ( TEMPMODEL=QUADRATIC TNOM = 90
+ LEVEL=2 BETA = 0.002770 VTO = -2.0350 PB = 1.507
+ LAMBDA = 0.00528 DELTA = 0.630 THETA = 0.0
+ IS = 1.393E-10 RS = 5.66)

Note that the model names are all identical for three .MODEL lines, and they all specify
TEMPMODEL=QUADRATIC, but with different TNOM. For parameters that appear in all
three .MODEL lines, the value of the parameter will be interpolated using the TEMP= value
in the device line, which in this example is 40 degree C, in the first line. For parameters
that are not interpolated, like RD, it is not necessary to include these in the second and
third .MODEL lines.

Currently, the only arguments for TEMPMODEL are QUADRATIC and PWL (piecewise
linear). The quadratic method also has a limiting feature that does not allow the parameter
value to go outside the range of values specified in the .MODEL lines. For example, the
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value of RS in the example would take on negative values for most of the interval between -
55 and 27 since the value at 90 is very high. This truncation is necessary since parameters
can easily take on values that will cause failure of Xyce, like the negative resistance of RS
in this example.

For certain parameters, interpolation is done on the the log of the parameter rather than
the parameter itself. So far, this is only applicable to the BJT parameters IS and ISE.
This gives excellent interpolation of these parameters, which vary over many orders of
magnitude, and have this type of dependence on temperature.
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6. Analog Behavioral
Modeling

Chapter Overview
This chapter contains a description of analog behavioral modeling in Xyce. Sections in-
clude:

� Section 6.1,Overview of Analog Behavioral Modeling

� Section 6.2, Specifying ABM Devices

� Section 6.3, Guidance for ABM Use
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6.1 Overview of Analog Behavioral
Modeling

The analog behavioral modeling capability of Xyce provides for flexible descriptions of
electronic components in terms of a transfer function or lookup table. In other words,
a mathematical relationship is used to model a circuit segment removing the need for
component by component design.

The primary device used for analog behavioral modeling in Xyce is the B device, or non-
linear dependent source. A B device can serve as a voltage or current source, and by
using expressions dependent on voltages and currents elsewhere in the circuit the user
can produce any desired behavior.

6.2 Specifying ABM Devices
ABM devices (B devices) are specified in a netlist the same way as other devices. Cus-
tomizing the operational behavior of the device is achieved by defining an ABM expression
describing how inputs are transformed into outputs.

For example, the pair of lines below would provide exactly the same behavior as a 10K re-
sistor between nodes 1 and 2. It is written to be a current source with the current specified
using Ohm’s law and the constant resistance.

.PARAM Res1=10K
Blinearres 1 2 I={(V(2)-V(1))/Res1}

A nonlinear resistor could be specified similarly:

.PARAM R1=0.15

.PARAM R2=6

.PARAM E2 = {2*E1}

.PARAM delr = {R1-R0}

.PARAM k1 = {1/E1**2}

.PARAM r2 = {R0+sqrt(2)*delr}
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.FUNC Rreg1(a,b,c,d) {a +(b-a)*c/d}

.Func Rreg2(a,b,c,d,f) {a+sqrt(2-b*(2*c-d)**2)*f}

Bnlr 4 2 V = {I(Vmon) * IF(
+ V(101) < E1, Rreg1(R0,R1,V(101),E1),
+ IF(
+ V(101) < E2, Rreg2(R0,k1,E1,V(101),delr), R2
+ )
+ )}

In this example, Bnlr provides a voltage between nodes 4 and 2, and the voltage is de-
termined using Ohm’s law with a resistance that is a function of the voltage on node 101
and a number of parameters. These two examples demonstrate how the B source can be
used either as a voltage source (by specifying V={expression}) or as a current source
(with I={expression}).

Note that unlike expressions used in parameters or function declarations, expressions in
the nonlinear dependent source may contain voltages and currents from other parts of the
circuit, or even explicit time-dependent functions. These expressions are evaluated every
time the current or voltage through the source are needed.

Additional constructs for use in ABM expressions

ABM expressions follow the same rules as other expressions in a netlist with the additional
ability to specify signals (node voltages and voltage source currents) and explicitly time-
dependent functions in the expression. In ABM expressions, refer to signals by name.
Xyce recognizes the following constructs in ABM expressions:

� V(<node name>)

� V(<node name>,<node name>)

� I(<voltage source name>)

� I(<two terminal device name>)

� I<lead designator>(three or more terminal device name>)

� The variable TIME

� Lookup tables
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In a hierarchical circuit (a circuit with possibly nested levels of subcircuits), voltage source
names that appear in an ABM expression must be the name of a voltage source in the
same subcircuit as the ABM device. Similarly, node names in an ABM expression must be
the node names of one or more devices in the same subcircuit as the ABM device.

Examples of Analog Behavioral Modeling

A variety of examples of legal usage of analog behavioral modeling is probably the most
effective means of demonstrating what is allowed. The following shows the range of simple
items allowed in such expressions:

B1 1 0 I={V(2,3) + I(R4)}
R4 2 0 10K
Em 3 2 VALUE={PAR3+1000*time}
B2 2 0 V={I(Em)}
M3 8 6 0 NMOD
B3 6 4 V={ID(M3)+V(2)}

The range of items that can be used in the current and voltage parameters of a B (or E,
F, G, or H) source is far greater than what is allowed for expressions in other contexts.
In particular, the use of solution values (V(*), V(*,*), I(V*)), and lead currents (I(*) and
I*(*)) are prohibited in all other expressions because they lead to unstable behavior if used
elsewhere. Time dependent expressions are allowed for some device parameters, but this
feature should be used with caution as the behavior of the device cannot be guaranteed to
be correct when device parameters are not constant throughout the run.

In addition to these simple items, lookup tables provide a means of specifying a piecewise-
linear function in an expression. A table expression is specified with the keyword TABLE
followed by an expression that is evaluated as the independent variable of the piecewise
linear function, followed by a list of pairs of independent variable/dependent variable val-
ues. For example

Example: B1 1 0 V={TABLE {time} = (0, 0) (1, 2) (2, 4) (3, 6)}

An equivalent example uses the table function, which has a simpler syntax, but which may
be hard to read for long tables:

Example: B1 1 0 V={TABLE(time, 0, 0, 1, 2, 2, 4, 3, 6)}
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These examples will produce a voltage source whose voltage is a simple linear function of
time. At t = 0 the voltage is 0 volts, at time t = 1s the voltage is 2 volts, and at times in
between the voltage is determined by linear interpolation.

The independent variable of the table source does not have to be a simple expression:

Example: B1 1 0 V={TABLE {V(5)-V(3)/4+I(V6)*Res1} = (0, 0) (1, 2) (2, 4) (3, 6)}

Alternate behavioral modeling sources

In addition to the primary nonlinear dependent source, the B source, Xyce also supports
the PSpice extensions to the standard Spice voltage- and current-controlled sources, the
E, F, G and H sources. These sources are provided for PSpice compatibility, and are con-
verted internally into equivalent B sources. See the Netlist Reference chapter of the Xyce
Reference Guide [3] for the syntax of these compatibility devices.

6.3 Guidance for ABM Use

ABM devices add equations to the system of equations
used by the solver

It is important that the user keep in mind that Xyce solves a complex nonlinear set of
equations at each time step, that this system of equations is solved iteratively to obtain a
converged solution. Specifying an ABM device in a Xyce netlist adds one or more equa-
tions to the nonlinear problem that Xyce has to solve.

When the nonlinear solver has converged, the expression given in the ABM device will be
satisfied to within a solver tolerance. However, during the course of the iterative solve, the
unconverged values of nodal voltages and currents, which are often inputs and outputs of
ABM devices, are not guaranteed to be solutions to the system of equations.

During this pre-converged phase, solution variables are not guaranteed to have physically
reasonable values. They could, for example, temporarily have the wrong sign. Only at
the end of a successful nonlinear iterative solve are the solution variables consistent, legal
values.
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All expressions used in ABM devices must be valid for any
possible input

While ABM devices look temptingly like calculators, it is potentially dangerous to use them
as such. In the previous subsection, it was stated that during the nonlinear solution of
each timestep’s equations the nodal voltages and currents are usually not solutions to the
full set of equations, and often violate Kirchhoff’s laws. Only at the end of the nonlinear
solution are all the constraints on voltages and currents satisfied. This has some important
consequences to the user of ABM devices.

All expressions involving nodal voltages and currents used in ABM devices should be valid
for any possible value they might see — even those that appear to be physically meaning-
less and which a knowledgeable user might never expect to see in the real circuit. This is
particularly important when using square roots or exponentiating to a fractional power. For
example, consider the netlist fragment below:

*...other parts of more complex circuit deleted...
* potentially bad usage of ABM device
Vexample 1 0 5V
d1 1 0 diode_model
B1 2 0 V={sqrt(v(1))}
r1 2 0 10k
*...other parts of more complex circuit deleted...

This example demonstrates a potentially dangerous usage. It is assumed, because node
1 is connected to a 5V DC source, that the argument of the square root function is always
positive. However it could be the case that during the nonlinear solution of the full circuit
that an unconverged value of node 1 might be negative. Tracking down mistakes like this
can be difficult, as what tends to happen is that on most platforms B1 results in a “Not
a Number” value for the nodal voltage of node 2, but the program doesn’t crash. This
frequently shows up as inexplicable “Timestep too small” errors.

Such things can be avoided by protecting the arguments of functions with limited domain,
but care needs to be taken when doing this. One obvious way to protect the circuit fragment
above would be to take the absolute value of V(1) before calling the sqrt function:

*...other parts of more complex circuit deleted...
* safer usage of ABM device
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Vexample 1 0 5V
d1 1 0 diode_model
B1 2 0 V={sqrt(abs(v(1)))}
r1 2 0 10k
*...other parts of more complex circuit deleted...

There are numerous other ways to protect the square root function from negative argu-
ments, such as by using the maximum of zero and V(1). Some alternatives might be more
appropriate than others in different contexts.

Note, though, that it would be a mistake to attempt the absolute value like this:

*...other parts of more complex circuit deleted...
* really bad misuse of ABM device
Vexample 1 0 5V
d1 1 0 diode_model
B2 3 0 V={abs(v(1))} ; watch out!
B1 2 0 V={sqrt(v(3))}; just as bad as first example!
r1 2 0 10k
*...other parts of more complex circuit deleted...

There are two things wrong with this example — first, node 3 is floating and this alone
could lead to convergence problems. Second, by adding the second ABM device one has
merely created an equation whose solution is that node 3 contains the absolute value of
the voltage on node 1, but until convergence is reached it is not guaranteed that node 3
will be precisely the absolute value of V(3), nor is it even guaranteed that node 3 will have
a positive voltage. Only at convergence do nodes have the values that are solutions to the
set of equations created by the netlist.

ABM devices should not be used purely for output
post-processing

Users sometimes use ABM devices to provide output post-processing. For example, if a
user was interested in the absolute value, or the log of an output voltage, that user might
create a ABM circuit element that calculated the desired output value.

Using ABM sources in this manner is bad practice. By creating a circuit element whose only
purpose is post-processing, Xyce is forced to include it in the circuit, and the corresponding
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nonlinear solve. This can cause unnecessary solver problems. If post-processing is the
goal, it is much better to use expressions directly on the .PRINT line. This is a supported
capability as of Xyce Release 2.1.

* Bad example
B1 test1 0 V = {(abs(I(VMON)))*1.0e-10}
VIN 1 0 DC 5V
R1 1 2 2K
D1 3 0 DMOD
VMON 2 3 0
.MODEL DMOD D (IS=100FA)
.DC VIN 5 5 1
.PRINT DC I(VMON) V(3) V(test1)

An example of a “bad use” of ABM sources can be found the above code fragment. The
source B1, is only in the circuit to provide a post-processing output. It doesn’t play a
functional role in the circuit, but Xyce would still be forced to include it in the problem it
is attempting to solve. A much better solution is to get rid of B1, and replace it with an
expression in the .PRINT line. A better solution to the above problem is given here:

* Good example
VIN 1 0 DC 5V
R1 1 2 2K
D1 3 0 DMOD
VMON 2 3 0
.MODEL DMOD D (IS=100FA)
.DC VIN 5 5 1
.PRINT DC I(VMON) V(3) {(abs(I(VMON)))*1.0e-10}

For a more detailed explanation of how to use expressions in the .PRINT line, see sec-
tion 9.1, or the Xyce Reference Guide [3] .
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Chapter Overview
This chapter contains a description of the different analysis types available in Xyce. It
includes the following sections:

� Section 7.1, Introduction

� Section 7.2, DC Analysis

� Section 7.3, Transient Analysis

� Section 7.4, STEP Parametric Analysis

� Section 7.5, Harmonic Balance Analysis

� Section 7.6, AC Analysis

� Section 7.7, Multi-Time PDE Analysis
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7.1 Introduction
Several simulation analysis options are supported within Xyce. These currently include
operating point (.DC) 7.2, transient (.TRAN) 7.3, AC (.AC) 7.6, harmonic balance (.HB) 7.5,
and multi-time PDE (.MPDE) 7.7 analysis.

Xyce can also apply an outer parametric loop to any type of analysis, using .STEP 7.4.
This allows one (for example) to sweep a model parameter and do a transient simulation
for each value of the parameter.

There are some analysis types that are typically found in Spice-style simulators that are
still a work in progress for Xyce. Operating point analysis (.OP) 7.2 is partially supported
in Xyce. It is expected that this will be fully supported in a future version.

7.2 Steady-State (.DC) Analysis
The DC sweep analysis capability in Xyce carries out a sweep, in DC mode, on a circuit.
DC sweep is supported for a source (current or voltage), through a range of specified
values. As the sweep proceeds, the bias point is computed for each value in the specified
range of the sweep.

If the variable to be swept is a voltage or current source, a DC source must be used. The
DC value is set in the netlist (see the Xyce Reference Guide [3] . In simulating the DC
response of an analog circuit, Xyce eliminates any time dependence from the circuit. This
is accomplished by treating all capacitor elements as open circuits, all inductor elements
as short circuits and using only the DC values of both voltage and current sources.

.DC Statement

One specifies a .DC analysis with a .DC line in the netlist. Some examples of typical .DC
lines are:

Example:
.DC M1:L 7u 5u -1u
.DC OCT V0 0.125 64 2
.DC DEC R1 100 10000 3
.DC TEMP LIST 10.0 15.0 18.0 27.0 33.0
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The examples include all four types of sweep - linear, octave, decade, and list. For a
complete description of each of these, see the Xyce Reference Guide [3] .

Setting Up and Running a DC Sweep

Following the example given in Section 3.2, the diode clipper circuit netlist is shown in
Figure 7.1 with a DC sweep analysis specified. Here, the voltage source Vin is swept from
-10 to 15 in 1 volt increments, resulting in 26 DC operating point calculations. Note also
that the default setting for Vin is ignored during these calculations. All other source values
use the specified values (VCC = 5V in this case).

Running Xyce on this netlist produces an output results file named clipper.cir.prn.
Obtaining this file requires that the .PRINT DC line be specified.Plotting this data produces
the graph shown in Figure 7.2.

OP Analysis

Xyce also supports .OP analysis statements. In Xyce, .OP should be considered as a
shorthand for a single step DC sweep, in which all the default operating point values are
used. One can also consider .OP analysis to be the operating point calculation which would
occur as the initial step to a transient calculation, without the subsequent time steps.

This capability was mainly added so that the code would be able to handle legacy netlists
which used this type of analysis statement. In most versions of SPICE, using .OP will result
in extra output which is not available from a DC sweep. That additional output capability
has not yet been implemented in Xyce.

7.3 Transient Analysis
The transient response analysis simulates the response of the circuit from TIME=0 to a
specified time. Throughout a transient analysis, any or all of the independent sources may
have time-dependent values.

In Xyce (and most other circuit simulators), the transient analysis begins by performing its
own bias point calculation at the beginning of the run, using the same method as used for
DC sweep. This is required to set the initial conditions for the transient solution as the initial
values of the sources may differ from the their DC values.
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Diode Clipper Circuit
** Voltage Sources
VCC 1 0 5V
VIN 3 0 0V
* Analysis Command
.DC VIN -10 15 1
* Output
.PRINT DC V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940 D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
.MODEL D1N3940 D(
+ IS=4E-10 RS=.105 N=1.48 TT=8E-7
+ CJO=1.95E-11 VJ=.4 M=.38 EG=1.36
+ XTI=-8 KF=0 AF=1 FC=.9
+ BV=600 IBV=1E-4)
.END

Figure 7.1. Diode clipper circuit netlist for DC sweep analysis.
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Figure 7.2. DC sweep voltages at Vin, node 2 and Vout.

.TRAN Statement

To run a transient simulation, the circuit netlist file must contain a .TRAN command.

Example:
.TRAN 100us 300ms
.TRAN 100p 12.05u 9.95u

For a detailed explanation of the .TRAN statement, see the Xyce Reference Guide [3] . In
addition to a .TRAN statement, the netlist must contain one of the following:

� an independent, transient source (see Table 7.1),

� an initial condition on a reactive element, or

� a time-dependent behavioral modeling source (see Chapter 6)

Defining a Time-Dependent (transient) Source
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Overview of Source Elements

Source elements, either voltage or current, are entered in the netlist file as described in the
Xyce Reference Guide [3] . Table 7.1 list the time-dependent sources available in Xyce for
either voltage or current. For voltage sources, the name is preceded by the letter V while
current sources are preceded by the letter I.

Source Element Name Description

EXP Exponential Waveform

PULSE Pulse Waveform

PWL Piecewise Linear Waveform

SFFM Frequency-modulated Waveform

SIN Sinusoidal Waveform

Table 7.1. Summary of time-dependent sources supported by
Xyce.

To use one of these time-dependent or transient sources, the user must place the source
element line in the netlist and characterize the transient behavior using the appropriate
parameters. Each transient source element has a separate set of parameters dependent
on its transient behavior. In this way, the user can create analog sources which produce
sine wave, square pulse, exponential pulse, single-frequency FM, and piecewise linear
waveforms.

Defining Transient Sources

To define a transient source:

� Select one of the supported sources: independent voltage or current source.

� Choose a transient source type from Table 7.1.

� Provide the transient parameters (see the Xyce Reference Guide [3] to fully define
the source.

Below is an example of an independent sinusoidal voltage source in a circuit netlist. It
creates a voltage source between nodes 1 and 5 that oscillates sinusoidally between -
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5V and +5V with a frequency of 50 KHz. The arguments specify an offset of -5V, a 10V
amplitude, and a 50KHz frequency in that order.

Example: Vexample 1 5 SIN(-5V 10V 50K)

Transient Time Steps

During the simulation, Xyce uses a calculated time step that is continuously adjusted for
accuracy and efficiency (see [7] and [8]). During periods of circuit idleness the calculation
time step is increased, and during dynamic portions of the waveform it is decreased. The
maximum internal step size can be controlled by specifying the step ceiling value in the
.TRAN command (see the Xyce Reference Guide [3] .

The internal calculation time steps used might not be consistent with the output time steps
requested by the user. By default Xyce outputs solution results at every time step it cal-
culates. If the user selects output timesteps via the .OPTIONS OUTPUT statement (see
Chapter 9) then Xyce will output results at the interval requested, interpolating solution
variables to desired output times if necessary.

Time Integration Algorithm Controls

In transient analysis, you can select one of several time integration methods to solve the
circuit differential algebraic equations:

� variable order Trapezoidal (combines Trapezoidal and BE)

� Backward Difference Formula orders 1-5

Default Time Integrator

In Xyce Release 5.3, the default time integrator has been changed to use variable order
Trapezoidal time integration method, an enhanced and more aggresive Local Truncation
Error (LTE) method and a new time stepping method after a break point to speedup the
transient simulation. The default RELTOL has been changed to be 1e-3. For a detailed ex-
planation of the .OPTIONS TIMEINT NEWLTE and .OPTIONS TIMEINT NEWBPSTEPPING, see
the Xyce Reference Guide [3] .
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In order to go back to the old default time integrator which uses Backward Difference
Formula 1-5 time integration method, the following transient options need to be specified:

.OPTIONS TIMEINT METHOD=6 NEWLTE=0 NEWBPSTEPPING=0 RELTOL=1e-2 NLNEARCONV=1

Time Integration Methods

Each time integration method has advantages and disadvantages.

The trapezoidal is often the preferred algorithm because of its high accuracy level and
low simulation time. The pure trapezoidal is recommended for oscillators. The following
transient options specify the pure trapezoidal method.

.OPTIONS TIMEINT MINORD=2

The Backward Difference Formula (BDF) is an appropriate algorithm for convergence. The
BDF is recommended for those circuit simulations that require high accuracy on current
such as leakage current measurement.

If the circuit fails to converge using the Trapezoidal integration method, using the BDF
method to run the transient analysis again may help.

Time Step Error Controls

There are two basic time step error control methods in Xyce. The first is Local Truncation
Error (LTE) based and the second is non-LTE based.

Local Trunction Error (LTE) Strategy

Both the BDF15 integrator and the Trapezoid integrator use the LTE based strategy by
default. The strategy is to specify appropriate relative and absolute error tolerances. These
are specified using .options timeint abstol=1.0e-6 reltol=1.0e-3. These are the default
values.

Example:
.OPTIONS TIMEINT RELTOL=1e-1 ABSTOL=1e-5
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One feature of the Trapezoid integrator is that there is no numerical dissipation introduced
by the algorithm. This means that strong ringing will occur when discontinuities are intro-
duced by sources or models. This ringing is entirely artificially introduced by the numerical
algorithm. This can result in a large local truncation error estimate ultimately leading to a
time-step too small error. In this case, using the BDF method or a Non LTE strategy may
help.

Non LTE Strategy

The Non LTE strategy used in Xyce is based on success of the nonlinear solve. This
strategy is enabled by setting ERROPTION=1. The behavior of this setting is slightly differ-
ent for the BDF15 integrator and the Trapezoid integrator. Since the step-size selection is
based only upon nonlinear iteration statistics, and not accuracy, it is highly suggested that
DELMAX be specified in a circuit specific way.

For the BDF15 integrator, if the nonlinear solver converges then the step-size is doubled.
On the other hand, if the nonlinear solver fails to converge, then the step-size is cut by one
eighth.

Example:
.OPTIONS TIMEINT ERROPTION=1 DELMAX=1.0e-4

For the Trapezoid integrator, the options are slightly more refined. If the number of non-
linear iterations is below NLMIN, then the step-size is doubled. If the number of nonlinear
iterations is above NLMAX then the step-size is cut by one eighth. In between, the step-
size is left alone.

Example:
.OPTIONS TIMEINT METHOD=7 ERROPTION=1 NLMIN=3 NLMAX=8 DELMAX=1.0e-4

By default time-steps are not rejected unless the nonlinear solver fails to converge. This
is the opposite of the default mode in LTE based step-selection. This can be enabled with
TIMESTEPSREVERAL=1.

Example:
.OPTIONS TIMEINT METHOD=7 ERROPTION=1 DELMAX=1.0e-4 TIMESTEPSREVERAL=1
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Checkpointing and Restarting

The .OPTIONS RESTART command (in the netlist) is used to control all checkpoint output
and restarting. Checkpointing and associated restart can be extremely useful for long
simulations. In essence, Xyce allows the user to save the state of the simulation during a
run (at intervals the user specifies) (checkpointing). This checkpoint data can then be read
in to restart the simulation from any of the saved (checkpointed) time points.

Checkpointing Command Format

� .OPTIONS RESTART PACK=<0|1> JOB=<job name> [INITIAL_INTERVAL=<interval>
[<t0> <i0> [<t1> <i1>...]]]

PACK=<0|1> indicates whether the restart data files will contain byte packed data(1)
or not(0). JOB=<job name> identifies the prefix for restart files. The actual restart files
will be the job name appended with the current simulation time (e.g. name1e-05 for
JOB=name and simulation time 1e-05 seconds). Furthermore, the
INITIAL INTERVAL=<interval> identifies the initial interval time used for restart out-
put. The <tx ix> intervals identify times (tx) at which the output interval (ix) will
change. This functionality is identical to that described for the .OPTIONS OUTPUT
command (see Section 9.1).

� Example - generate checkpoints at every time step (default):

.OPTIONS RESTART JOB=checkpt

� Example - generate checkpoints every 0.1 µs:

.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.1us

� Example - generate unpacked checkpoints every 0.1 µs:

.OPTIONS RESTART PACK=0 JOB=checkpt INITIAL_INTERVAL=0.1us

� Example - Initial interval of 0.1 µs, at 1 µs in the simulation, change to interval of 0.5
µs, and at 10 µs change to an interval of 0.1 µs:

.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.1us 1us 0.5us
+ 10us 0.1us
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Restarting Command Format

� .OPTIONS RESTART <FILE=<filename> | JOB=<job name> START_TIME=<time>>
+ [INITIAL_INTERVAL=<interval> [<t0> <i0> [<t1> <i1> ...]]]

To restart from an existing restart file, the file can be specified by using either the
FILE=<filename> parameter to explicitly request a file or
JOB=<job name> START TIME=<time> to specify a file prefix and a specific time. The time
must exactly match an output file time for the simulator to correctly load the file. To continue
generating restart output files, INITIAL INTERVAL=<interval> and following intervals can
be appended to the command in the same format as described above.

� Example - Restart from checkpoint file at 0.133 µs:

.OPTIONS RESTART JOB=checkpt START_TIME=0.133us

� Example - Restart from checkpoint file at 0.133 µs :

.OPTIONS RESTART FILE=checkpt0.000000133

� Example - Restart from 0.133 µs and continue checkpointing at 0.1 µs intervals:

.OPTIONS RESTART FILE=checkpt0.000000133 JOB=checkpt_again
+ INITIAL_INTERVAL=0.1us
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7.4 STEP Parametric Analysis
The .STEP command performs a parametric sweep for all the analyses of the circuit. When
this command is invoked, all of the typical analysis, such as .DC, .AC and .TRAN analysis
are performed at each parameter step.

This capability is very similar to the STEP capability in PSPICE [4], but not identical. In Xyce,
.STEP can be used to sweep over any device instance or device model parameter, as well
as the circuit temperature. It is not legal to sweep parameters defined in .PARAM state-
ments, but it is legal to sweep global parameters defined in .global param statements.
See (Section 4.3) for a discussion of these two distinct parameter definitions.

.STEP Statement

One specifies a .STEP analysis by simply adding a .STEP line to a netlist. Note that unlike
.DC, .STEP by itself is not an adequate analysis specification, as it merely specifies an
outer loop around the normal analysis. There still needs to be a standard analysis line,
either specifying .TRAN, .AC and .DC analysis.

Some examples of typical .STEP lines are:

Example:
.STEP M1:L 7u 5u -1u
.STEP OCT V0 0.125 64 2
.STEP DEC R1 100 10000 3
.STEP TEMP LIST 10.0 15.0 18.0 27.0 33.0

.STEP has a format similar to that of the .DC specification. In the first example, M1:L is
the name of the parameter, 7u is the initial value of the parameter, 5u is the final value of
the parameter, and -1u is the step size. Like .DC, .STEP in Xyce can also handle sweeps
by decade, octave or specified lists of values. For a complete explanation of each type of
sweep, consult the Xyce Reference Guide [3] .

Sweeping over a Device Instance Parameter

The first example uses M1:L as the parameter, but it could have used any model or instance
parameter that existed in the circuit. Internally, Xyce handles the parameters for all device
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models and device instances in the same way. You can uniquely identify any parameter
by specifying the device instance name, followed by a colon (:), followed by the specific
parameter name. For example, all the MOSFET models have an instance parameter for
the channel length, L. If you have a MOSFET instance specified in a netlist, named M1,
then the full name for M1’s channel length parameter is M1:L.

A simple application of .STEP to a device instance is given in figure 7.3. This is the same
diode clipper circuit as was used in the transient analysis chapter, except that a single line
(in red font) has been added. The .STEP line will cause Xyce to sweep the resistance of
the resistor, R4, from 3.0 KOhms to 15.0 KOhms, in increments of 2.0 KOhms. This means
that a total of seven transient simulations will be performed, each one with a different value
for R4.

As the circuit is executed multiple times, the resulting output file is a little more sophisti-
cated. The .PRINT statement is still used in much the same way as before. However, the
.prn output file contains the concatenated output of each .STEP increment. For details of
how .STEP changes output files, see the end of this section.

Sweeping over a Device Model Parameter

Sweeping a model parameter can be done in an identical manner to an instance parameter.
Figure 7.4 contains the same circuit as in figure 7.3, but with a new .STEP line added. The
new .STEP line refers to a model parameter, D1N3940:IS. Note that separate .STEP lines
are the correct way to specify multiple parameters for a .STEP analysis. Each parameter
needs its own separate line. In this respect, the .STEP line syntax differs from the .DC line
syntax.

Sweeping over Temperature

It is also possible to sweep over temperature. To do so, simply specify temp as the param-
eter name. It will work in the same manner as .STEP when applied to model and instance
parameters.

Special cases: Sweeping Independent Sources, Resistors,
Capacitors

For some devices, there is generally only one parameter that one would want to actually
sweep. For example, a linear resistor’s only parameter of interest is the resistance, R. Sim-
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Transient Diode Clipper Circuit with step analysis
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Step statement
.STEP R4:R 3.0K 15.0K 2.0K
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
.MODEL D1N3940 D(
+ IS=4E-10 RS=.105 N=1.48 TT=8E-7
+ CJO=1.95E-11 VJ=.4 M=.38 EG=1.36
+ XTI=-8 KF=0 AF=1 FC=.9
+ BV=600 IBV=1E-4)
.END

Figure 7.3. Diode clipper circuit netlist for step transient analysis.
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Transient Diode Clipper Circuit with step analysis
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Step statements
.STEP R4:R 3.0K 15.0K 2.0K
.STEP D1N3940:IS 2.0e-10 6.0e-10 2.0e-10
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
.MODEL D1N3940 D(
+ IS=4E-10 RS=.105 N=1.48 TT=8E-7
+ CJO=1.95E-11 VJ=.4 M=.38 EG=1.36
+ XTI=-8 KF=0 AF=1 FC=.9
+ BV=600 IBV=1E-4)
.END

Figure 7.4. Diode clipper circuit netlist for 2-step transient analy-
sis.
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ilarly, for a DC voltage or current source, one is usually only interested in the magnitude of
the source. Finally, linear capacitors generally only have the capacitance, C, as a parame-
ter of interest. To make things easier for the user, these three types of devices have default
parameters. Examples of usage are given below.

Example:
.STEP R4 3.0K 15.0K 2.0K
.STEP VCC 4.0 6.0 1.0
.STEP ICC 4.0 6.0 1.0
.STEP C1 0.45u 0.50u 0.1u

Independent sources require some extra explanation. There are a number of different
types of independent sources, and only some of them have default parameters. Sources
which are subject to .DC sweeps (swept sources) do not have a default parameter, as this
could easily lead to infinite loops. The various independent source defaults are defined in
table 7.2.

Source Type Default

Sinusoidal source V0 (DC value, Offset)

Exponential source V1 (DC value, Initial value)

Pulsed source V2 (Pulsed value)

Constant, or DC source V0 (Constant value)

Piecewise Linear source No default

SFFM source No default

Swept source (specified on a .DC line) No default

Table 7.2: Default parameters for independent sources.

Output files

A .STEP simulation can be thought of as several distinct executions of the same circuit
netlist. The output data, as specified by a .PRINT line, however, goes to a single (*.prn)
file. For convenience, a second auxilliary file is also created, with the *.res suffix.

The example file given in figure 7.3 has a filename of clip.cir. When run, it will produce
files clip.cir.res and clip.cir.prn. clip.cir.res contains one line for each step,
showing what parameter value was used on that step. clip.cir.prn is the familiar output
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format, but the INDEX field recycles to zero each time a new step begins. Since the default
behavior distinguishes each step’s output only by recycling the INDEX field to zero, it can
be beneficial to add the sweep parameters to the .PRINT line. For the default file format
(format=std), these sweep parameters will not be included automatically, so for plotting
purposes it is usually best to specify them by hand.

If using the default .prn file format (format=std), the output file resulting from a .STEP
simulation will be a simple concatenation of each step’s underlying analysis output. If
using format=probe, the data for each execution of the circuit will be in distinct sections of
the file, and it should be easy to plot the results using PROBE. If using format=tecplot,
the results of each .STEP simulation will be in a distinct tecplot zone.
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7.5 Harmonic Balance Analysis
Harmonic balance (HB) is a technique which solves for steady states of nonlinear circuits
in the frequency domain. It is well-suited for simulating RF and microwave circuits. Har-
monic balance simulation solves for the magnitude and phase of voltages and currents in
a nonlinear circuit.

Currently, Xyce supports single-tone HB for driven circuits in its serial build. Support for
multi-tone HB and oscillator HB, as well as parallel HB, will come later.

.HB Statement

To run a HB simulation, the circuit netlist file must contain a .HB command.

Example:
.HB 1e4

The parameter following .HB is the fundamental frequency. It must be specified by the
user. For a detailed explanation of the .HB statement, see the Xyce Reference Guide [3] .

HB Options

Key parameters for HB simulation can be specified by .options hbint.

Example:
.options hbint numfreq=41 STARTUPPERIODS=2

In the example above, numfreq specifies the number of harmonic frequencies to be calcu-
lated and it must be an odd number. STARTUPPERIODS specifies the number of time periods
that Xyce should integrate through using normal transient analysis before trying to gener-
ate initial conditions for the HB analysis. For a detailed explanation of the HB options, see
the Xyce Reference Guide [3] .

One of the most common errors in HB simulation setup is the use of too few harmonic
frequencies, i.e. numfreq is too small. You can determine what number of harmonic fre-
quencies is optimum if you first simulate your circuit with a small numfreq then increase the
numfreq by 1 or 2 harmonics until the solution stops changing within a significant bound.
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Using too many harmonic frequencies is wasteful of memory, file size and simulation time,
so it is not efficient to just clobber the problem with a very high numfreq.

HB Related Options

Nonlinear Solver Options

The HB analysis uses different set of default nonlinear solver parameters than that of tran-
sient and DC analysis. Nonlinear solver parameters for HB simulation can be specified by
using .options nonlin-hb.

Example:
.options nonlin-hb abstol=1e-6

For a detailed explanation of the .options nonlin-hb statement, see the Xyce Reference
Guide [3] .

Linear Solver Options

The single-tone HB analysis provided by Xyce employs direct solvers in the normal tran-
sient analysis used to generate the initial conditions. However, during the HB analysis,
only matrix-free operators are available, which require the use of iterative solvers. For a
more detailed discussion of iterative solvers, see Section 10.4.

Preconditioners have been developed for the iterative solvers used in HB analysis. The it-
erative solver and preconditioner options can be set using the .options hb-linsol state-
ment.

Example:
.options linsol-hb type=aztecoo prec type=block jacobi AZ tol=1e-9

In the example above, type specifies the iterative solver to use in the HB analysis and
AZ tol is the relative tolerance for the iterative solver. Any of the iterative solver op-
tions in Section 10.4 are valid options. However, prec type specifies which HB-specific
preconditioner to use and the choices for this option are none, which is the default, and
block jacobi.
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7.6 AC Analysis
The AC small-signal analysis of Xyce computes the ac output variables as a function of
frequency. The program first computes the dc operating point of the circuit and linearized
the circuit. The resultant linear circuit is then analyzed over a user-specified range of
frequencies. The desired output of an ac small- signal analysis is usually a transfer function
(voltage gain, transimpedance, etc). If the circuit has one ac input, it is convenient to set
that input to unity and zero phase, so that output variables have the same value as the
transfer function of the output variable with respect to the input.

.AC Statement

One specifies a .AC analysis with a .AC line in the netlist. Some examples of typical .AC
lines are:

Example:
.AC DEC 10 1K 100MEG
.AC DEC 10 1 10K
.AC LIN 100 1 100HZ

The examples include some types of sweep - linear and decade. For a complete descrip-
tion of all types of sweep , see the Xyce Reference Guide [3] .

AC Voltage and Current Sources

The AC source is assumed to be a cosine waveform at a specified phase angle. Its fre-
quency must be defined in a separate ”.AC” command that defines the frequency for all the
sources in the circuit. The unique information for the individual source is: the name, which
must start with ”V” or ”I,” the node numbers, the magnitude of the source, and its phase
angle. Some examples follow.

Example:
Vac 4 1 AC 120V 30
Vin 1 0 1.44 ac .1
Iin 1 0 1.44e-5 ac 0.1e-5 sin(0 1 1e+5 0 0)

Notice that the type, AC, must be specified, because the default is DC. If the phase angle
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is not specified it will be assumed as zero degrees. The units of the phase angle will be in
degrees.

Use of the .PRINT AC Command

Running Xyce on AC analysis produces an output results file named .cir.FD.prn. Ob-
taining this file requires that the .PRINT AC line be specified.

Currently, Xyce only supports printing both the real and imaginary parts of phasor values
(complex numbers) for AC analysis output. We can print voltages or currents. For instance,
to print the real part and imaginary part of a voltage at nodes 1, we would specify ”V(1).”
Some complete examples follow:

Example:
.print AC v(3)

Supporting for other formats of AC analysis output, such as magnitude, phase (angle) and
options to print each format, is still a work in progress for Xyce. This is expected to be
supported in a future version.
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7.7 Multi-Time PDE (MPDE) Analysis
Xyce includes an analysis option specifically designed for circuits with two disparate time
scales. For traditional transient analysis, a circuit with multiple time scales will require
the time integrator to take many small time steps to adequately resolve the waveform.
This can greatly slow simulation progress, and accuracy is reduced for long simulations
because error accumulates with each step.

For this type of system, Xyce can use an algorithm based on converting the original
differential-algebraic equation (DAE) to a multi-time partial differential equation(MPDE). [9]
By doing so, problem is recast with two different time variables, representing a fast time
scale and a slow one. The fast time scale is discretized and solved simultaneously at each
slow time scale step. If the two time scales are very different, one can dramatically reduce
runtime, and also produce a more accurate simulation by using MPDE analysis,

How different the time scales must be is problem-dependent. The resolution of the fast time
scale depends on the number fast time discretization points (set by the parameter N2), and
this number determines how different the time scales must be to justify using MPDE. If n
fast time points are used, the MPDE problem size increases by a factor of n compared with
traditional transient simulation. This increases memory usage, and the cost of each time
step increases by a factor greater than n, as the linear solution time scales superlinearly.
This additional expense is mitigated if the number of steps is decreased by substantially
more than n. For example, a mixer circuit, in which two oscillatory inputs have frequencies
differing by 104, and which used n = 100 of would be a very good candidate circuit for this
algorithm.

Note that circuits that do not have widely disparate timescales can often run successfully
with MPDE, in the sense that the algorithm will successfully converge, and run to comple-
tion, but there is no benefit to doing so.

MPDE Usage

To use MPDE analysis in a simulation, place the following .mpde statement in the netlist:

Example:
.mpde 0 1.0e-4

For a detailed explanation of the .mpde statement, see the Xyce Reference Guide [3] .
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Key parameters for mpde simulation can be specified by .options mpdeint.

.OPTIONS MPDEINT OSCSRC=<v1,v2...> IC=<1,2> [optional switches]

� OSCSRC=... A list of voltage or current sources that are to be considered as changing
on the fast time scale. Typically these will be all the sources that change at or more
quickly than the fast time scale.

� IC=[1,2] Specifies the method used to calculate the initial conditions for the MPDE
problem. 1 uses the Sawtooth algorithm while 2 uses an initial transient run for
the initial condition. During the initial condition calculation, the slow sources are
deactivated so one is integrating only along the fast time axis.

� N2=integer Specifies the number of equally spaced points to use in discretizing the
fast time scale. This option can only be used exclusive of the AUTON2 and AUTON2MAX
options.

� AUTON2=[true | false] False by default. If it is set to true, then an initial transient
run is done to generate a mesh of time points for the fast time scale. The belief here
is that the time integrator can do a better job picking out where it needs more points
to accurately describe the fast time solution. Note: you can use AUTON2 with IC=1 or
IC=2. If you use it with IC=1, then the time mesh is just used for the set of points the
for the Sawtooth initial conditions. This option can only be used exclusive to the N2
option.

� AUTON2MAX=integer This sets the maximum number of fast time points that will be
kept from the initial transient run so one has some control over the size of the simu-
lation. If the initial transient run produces 2,000 points and this is set at 50, Xyce will
uniformly sample points from the solution set for the MPDE simulation. This option
can only be used exclusive to the N2 option.

� STARTUPPERIODS=integer This is the number of fast time periods that Xyce should
integrate through using normal transient analysis before trying to generate initial con-
ditions for the MPDE analysis.

� diff=[0,1] Specifies the differentiation technique to use in calculating time deriva-
tives on the fast time scale. 0 uses backward differences for the fast time differentia-
tion while 1 uses central differences.

As an example here are two valid options lines for MPDE:
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Example: .options MPDEINT IC=1 N2=21 OSCSRC=Vsine

Example: .options MPDEINT IC=2 AUTON2=true AUTON2MAX=50 OSCSRC=VIN1,VIN2

Driven Circuit Example: Gilbert Cell

An example MPDE netlist, for a driven circuit, is given in figure 7.7. Results for this circuit
is given in figures 7.5 and 7.6. The circuit is a Gilbert cell mixer, and is a good candidate
for MPDE.

Figure 7.5. Gilbert Cell Result

110



7.7 Multi-Time PDE (MPDE) Analysis XyceTM Users’ Guide

Figure 7.6. Gilbert Cell Result. This result is interpolated from
the result in figure 7.5, from considering where t1=t2.
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A gilbert cell mixer
* From http://engphys.mcmaster.ca/~elmer101/swgilb.html
R5 1 2 100
Q3 3 2 4 DEFAULTS
Q4 5 6 4 DEFAULTS
Q5 3 6 8 DEFAULTS
Q6 5 2 8 DEFAULTS
R6 2 1 100
*the local oscillator
VLO 6 2 DC 0 SIN(0 .05V 1e4 0 0)
Q1 4 10 11 DEFAULTS
R1 11 12 10
R2 12 13 10
* input bias current
I1 12 0 DC 1.8mA
Q2 8 15 13 DEFAULTS
R4 15 16 1500
R3 16 10 1500
V1 16 0 DC 1.8V
*the input voltage to be mixed with the LO
V5 15 10 DC 0 sin(0 .05V 3e6 0 0)
R7 5 17 1500
R8 3 17 1500
V3 17 0 DC 8V
V2 1 0 DC 6V
.MODEL DEFAULTS NPN
* MPDE options:
.mpde 0 1.0e-4 0 5.0e-6
.options mpdeint ic=1 diff=0 oscsrc=V5 n2=101
.PRINT TRAN v(6,2) v(15,10) v(5,3)
.end

Figure 7.7. Gilbert Cell MPDE netlist. Note that the .tran line
has been given a maximum time step (5.0e-6), but this isn’t nec-
essary to run the circuit and will in fact slow the simulation down.
It has been included here so the two-dimensional plot in figure 7.5
is better resolved. The slow time scale is using a 5th-order BDF
method for time integration, but the 2D output is not interpolated,
so unrestrained time steps can result in a slightly course plot.
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8. Using Homotopy
Algorithms to Obtain
Operating Points

Chapter Overview
This chapter includes the following sections:

� Section 8.1, Homotopy Algorithms Overview

� Section 8.4, MOSFET Homotopy

� Section 8.2, Natural Parameter Homotopy

� Section 8.3, Natural Multi-Parameter Homotopy

� Section 8.5, GMIN Stepping Homotopy

� Section 8.6, Pseudo Transient
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8.1 Homotopy Algorithms Overview

Frequently, if a circuit has convergence problems, they will be most prominent during the
DC operating point calculation. Unlike transient solves, DC operating point analysis cannot
rely on a good initial guess from a previous step, and also cannot simply reduce the step
size when the solver fails. Additionally, operating points often have multiple solutions,
sometimes intentional, and sometimes not. Multiple solutions can, even for circuit problems
that converge, result in a standard Newton solve being unreliable. For example, it has been
observed that the operating point solution to a Schmidt trigger circuit may change from one
hardware platform to another.

Homotopy methods can often provide solutions to difficult nonlinear problems, including
circuit analysis, even when conventional methods (e.g. Newton’s method) fail [10] [11].
This chapter gives an introduction to the usage of homotopy algorithms (sometimes called
continuation algorithms) in Xyce. For a more complete description of solver options, see
the Xyce Reference Guide [3] .

HOMOTOPY Algorithms Available in Xyce

There are several types of homotopy which are available in Xyce. Most are accessible by
setting .options nonlin continuation=1, which allows the user to sweep existing device
parameters (models and instances), as well as a few reserved artificial parameter cases.
The most obvious natural parameter to use is the magnitude(s) of independent voltage or
current sources, the choice of which is equivalent to “source stepping” in SPICE. A Xyce
source-stepping example is given in section 8.2. Note that for some circuits (like the afore
mentioned Schmidt trigger) source stepping will lead to turning points in the continuation.

A special Xyce-only homotopy is an algorithm which is designed specifically for MOSFET
circuits [12]. This algorithm involves two internal MOSFET model parameters, one for the
MOSFET gain, and the other for the nonlinearity of the current-voltage relationship. This
algorithm is invoked with .options nonlin continuation=2. This algorithm has proved to
be very effective in some large MOSFET circuits. A detailed example is given in section 8.4.

“GMIN stepping”, another well-known SPICE method, is invoked with .options nonlin
continuation=3 or .options nonlin continuation=gmin, and is a special case where
the parameter being swept is artificial. An example of GMIN stepping is given in section 8.5.
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8.2 Natural Parameter Homotopy

Figure 8.1 contains a natural parameter homotopy netlist. The parameters pertinent to the
homotopy algorithm are highlighted in red. For this particular example, the parameter being
swept is the DC value of the voltage source VDDdev. As a result, this example demonstrates
a version of “source stepping”, similar to that of SPICE.

Note that this is a usage example - the circuit itself does not require homotopy to run. Most
circuits which are complex enough to require homotopy would not fit on a single page.

THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3
* HOMOTOPY Options

.options nonlin continuation=1

.options loca stepper=0 predictor=0 stepcontrol=1
+ conparam=VDDdev
+ initialvalue=0.0 minvalue=-1.0 maxvalue=5.0
+ initialstepsize=0.2 minstepsize=1.0e-4
+ maxstepsize=5.0 aggressiveness=1.0
+ maxsteps=100 maxnliters=200

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 8.1. Example natural parameter homotopy netlist. This is
an example of source stepping.
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Explanation of Parameters, Best Practice

There are a number of ”best practice” rules, which are illustrated by the example in fig-
ure 8.1. They are:

� .options nonlin continuation=1. Sets the algorithm to use natural parameter ho-
motopy.

� .options loca conparam=VDDdev. If using natural parameter homotopy, it is neces-
sary include a setting for conparam. It sets which input parameter to perform contin-
uation. The parameter name is subject to the same rules as parameter used by the
.STEP capability. (See section 7.4). In this case the parameter is the magnitude of
the DC voltage source, VDDdev. For this type of voltage source, it was possible to
use the default device parameter (see section 7.4)

� .options loca initialvalue=0.0. This is required.

� .options loca maxvalue=5.0. This is required.

� .options loca stepcontrol=1 or .options loca stepcontrol=adaptive. This spec-
ifies that the homotopy steps are adaptive, rather than constant. This is recom-
mended.

� .options loca maxsteps=100. This sets the maximum number of continuation steps
for each parameter.

� .options loca maxnliters=200. This is the maximum number of nonlinear itera-
tions, and has precedence over the similar number which can be set on the .options
nonlin line.

� .options loca aggressiveness=1.0. This refers to the step size control algorithm,
and the value of this parameter can be anything from 0.0 to 1.0. 1.0 is the most
aggressive. In practice, try starting with this set to 1.0. If the solver fails, then reset
to a smaller number.

Using the magnitudes of independent voltage and current sources is a fairly obvious ap-
proach. Unfortunately, it doesn’t seem to work very well in practice.
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8.3 Natural Multi-Parameter Homotopy
It is possible to use the natural parameter homotopy specification to have Xyce sweep
multiple parameters in sequential order. This requires that many of the parameters in the
.options loca statement be specified as vectors, delineated by commas, rather than as
single parameters.

Note that this is a usage example - the circuit itself does not require homotopy to run. Most
circuits which are complex enough to require homotopy would not fit on a single page.

Explanation of Parameters, Best Practice

The solver parameters set in figure 8.2 are the same as those from figure 8.1, but many
of them are in vector form. Any parameters that are specific to the continuation variable
must be specified as a vector. Parameter which are specified this way include conparam,
initialvalue, minvalue, maxvalue, initialstepsize, minstepsize, maxstepsize, and
aggressiveness. Otherwise, the specification is identical.
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THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3
* HOMOTOPY Options

.options nonlin continuation=1

.options loca stepper=0 predictor=0 stepcontrol=adaptive
+ conparam=mosfet:gainscale,mosfet:nltermscale
+ initialvalue=0.0,0.0
+ minvalue=-1.0,-1.0
+ maxvalue=1.0,1.0
+ initialstepsize=0.2,0.2
+ minstepsize=1.0e-4,1.0e-4
+ maxstepsize=5.0,5.0
+ aggressiveness=1.0,1.0

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 8.2. Example multi-parameter homotopy netlist. This
netlist reproduces MOSFET homotopy with a manual specifica-
tion.
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8.4 MOSFET Homotopy
Figure 8.3 contains a MOSFET homotopy example netlist. It is the same circuit as was
used in figure 8.3, except that some of the parameters are different. As before, the lines
pertinent to the homotopy algorithm are highlighted in red.

Note that this is a usage example - the circuit itself does not require homotopy to run. Most
circuits which are complex enough to require homotopy would not fit on a single page.

THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3

* HOMOTOPY Options
.options nonlin continuation=mos

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 8.3. Example MOSFET homotopy netlist.

Explanation of Parameters, Best Practice

There are a few differences between the netlist in figure 8.1 and figure 8.3. Note that this
example shows one set of options, but there are a number of other combinations of options
that will work.
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The only required parameter for MOSFET homotopy is .options nonlin continuation=2
or .options nonlin continuation=mos. This specifies that we are using the special
MOSFET homotopy. This is a 2-pass homotopy, in which first a parameter having to do
with the gain is swept from 0 to 1, and then a parameter relating to the nonlinearity of the
transfer curve is swept from 0 to 1. The default parameters present will work for a variety
of MOSFET circuits, so it often will not be neccessary to override them using an .options
loca line. However, if one wants to override the default parameters, it is possible using the
same .options loca parameters that are described in section 8.2.
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8.5 GMIN Stepping

A type of homotopy commonly available in circuit simulators is GMIN stepping. A netlist
example of GMIN stepping is shown in figure 8.4. In SPICE, GMIN stepping is auo-
matically attempted if the initial operating point fails. In Xyce, it is necessary to man-
ually specify it. However, it can be very simply specified by setting continuation=3 or
continuation=gmin.

THIS CIRCUIT IS A GMIN STEPPING EXAMPLE.
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3

* HOMOTOPY Options
.options nonlin continuation=gmin

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 8.4. Example GMIN stepping netlist. Note that the con-
tinuation parameter is gmin. It can also be specified using contin-
uation=3.

The name ”GMIN stepping” can be somewhat confusing, as ”GMIN” is also a user-specified
device package parameter that one can set, which is unrelated to this algorithm. In the
device context, it refers to a minimum conductance that is applied to many device models
to enhance convergence. In the homotopy context, ”GMIN” refers to the conductance of
resistors that are attached from every circuit node to ground.
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The continuation parameter is this conductance. It is initially very large, and is iteratively
reduced until the artificial resistors have a very high resistance. At the end of the continua-
tion, the resistors are removed from the problem. At this point, assuming the continuation
has been successful, the original user-specified problem has been solved.

Explanation of Parameters, Best Practice

In general, GMIN stepping can be very useful. It should be considered the first option
whenever a circuit fails to obtain an operating point. One advantage it has is that it has
the potential to be successful for any type of circuit. Unlike MOSFET homotopy, it doesn’t
require specific device models to be present to run.
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8.6 Pseudo Transient
Pseudo transient continuation is very similar to GMIN stepping, in that both algorithms
involve placing large artificial terms on the Jacobian matrix diagonal, and progressively
making these terms smaller until the original circuit problem is recovered. One difference is
that, rather than doing a series on Newton solves, Pseudo transient does a single nonlinear
solve while progressively modifying the pseudo transient parameter. An example of pseudo
transient homotopy options is shown in figure 8.5.

* HOMOTOPY Options
.options nonlin continuation=9

.options loca
+ stepper=natural
+ predictor=constant
+ stepcontrol=adaptive
+ initialvalue=0.0
+ minvalue=0.0
+ maxvalue=1.0e12
+ initialstepsize=1.0e-6
+ minstepsize=1.0e-6
+ maxstepsize=1.0e6
+ aggressiveness=0.1
+ maxsteps=200
+ maxnliters=200
+ voltagescalefactor=1.0

Figure 8.5. Example of Pseudo transient solver options. Note
that the continuation parameter is set to 9.

Explanation of Parameters, Best Practice

Similar to GMIN stepping, pseudo transient can be useful, but has not been observed
to be as successful as MOSFET-homotopy for large MOSFET circuits. Similar to GMIN
Stepping, for difficult non-MOSFET circuits it may be a good candidate. It will not work
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as often as GMIN stepping, but when it does work, it tends to be much faster, as the total
number of matrix solves is much smaller.
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9. Results Output and
Evaluation Options

Chapter Overview
This chapter illustrates how to output simulation results to data or output files.

� Section 9.1, Control of Results Output

� Section 9.2, Additional Output Options

� Section 9.3, Graphical Display of Solution Results

125



XyceTM Users’ Guide Results Output and Evaluation Options

9.1 Control of Results Output
Xyce supports only one solution output command, .PRINT. .PRINT is quite flexible, and
supports several output formats.

.PRINT Command

The .PRINT command sends the analysis results to an output file. Xyce supports several
options on the .PRINT line of netlists that control the format of the output. The syntax for
the command is as follows:

� .PRINT <analysis type> [options] <output variable(s)>

Example:
.PRINT TRAN FILE=Output.prn V(3) I(R3) ID(M5) V(4)
.PRINT DC format=tecplot FILE=Output.dat V(2) {I(C3)+abs(V(4))*5.0}
.print AC v(3)

Table 9.1 gives the various options currently available to the .PRINT command. Note that
as of Xyce Release 3.0, it is possible to include device current or lead current specifications
on the .PRINT line. Expressions can be output that include any valid .PRINT quantities. For
further information, see the Xyce Reference Guide [3] .

9.2 Additional Output Options

.OPTIONS OUTPUT Command

The main purpose of the .OPTIONS OUTPUT command is to provide control of the frequency
at which data is written to files specified by .PRINT TRAN commands. This can be espe-
cially useful in controlling the size of the results file for simulations which required a large
number of time steps. An additional benefit is that reducing the output frequency from the
default, which outputs results at every time-step, can improve performance. The format for
controlling the output frequency is:

� .OPTIONS OUTPUT INITIAL INTERVAL=<interval> [<t0> <i0> [<t1> <i1> ...]]
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Option. . . Action. . .

FORMAT=<STD|NOINDEX|PROBE|TECPLOT|RAW|CSV>

Controls the output format. The STD
format outputs data in standard columns.
The NOINDEX format is the same as the
standard format except that the index
column is omitted. The PROBE format
specifies that the output should be
formatted to be compatible with the
PSpice Probe plotting utility. The RAW
format specifies that the output conform to
the Spice binary rawfile. Use the -a
command line option to produce an ascii
rawfile. TECPLOT formats the output for
use in the TecPlot graphics package. CSV
produces a comma separated variable
format.
The default is STD.

FILE=<output filename>

Allows the user to specify the output
filename. The default is the netlist
filename with the characters “.prn”
appended (e.g., foo.cir.prn where
foo.cir was the input netlist filename.

WIDTH=<print field width>
Allows the user to control the column
width for the output data.

PRECISION=<floating point precision>
Controls the number of significant digits
past the decimal point.

FILTER=<filter floor value>
Specifies the absolute value below which
output variables will be printed as 0.0.

DELIMITER=<TAB|COMMA>
Specifies an alternate delimiter between
columns of output in the STD output
format.

Table 9.1. .PRINT command options.
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where INITIAL_INTERVAL=<interval> specifies the starting interval time for output and
<tx ix> specifies later simulation times (tx) where the output interval will change to (ix).

The following example shows the output being requested (via the netlist .OPTIONS OUTPUT
command) every .1µs for the first 10µs, every 1µs for the next 10µs, and every 5µs for the
remainder of the simulation:

Example: .OPTIONS OUTPUT INITIAL INTERVAL=.1us 10us 1us 20us 5us

9.3 Graphical Display of Solution
Results

Xyce does not provide integrated graphical display options, but it does produce output in a
form that may readily be used with commonly available graphical tools. Popular choices of
graphical viewers include TecPlot, gnuplot and MS Excel (see Figure 9.1 below for an
example plot using TecPlot, http://www.amtec.com). The standard Xyce print format
(FORMAT=STD or FORMAT=NOINDEX) are well suited for use with gnuplot. Comma separated
variable (FORMAT=CSV) is the best choice for import into Excel. FORMAT=TECPLOT produces
output specifically targeted at the TecPlot tool. And by using the FORMAT=PROBE option to
the .PRINT command, Xyce is able to output .csd files which can be read by the PSpice
Probe utility to view the results. See the PSpice Users Guide [4] for instructions on using
the Probe tool, and the Xyce Reference Guide [3] for details on the options to the .PRINT
command.
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Figure 9.1. TecPlot plot of diode clipper circuit transient response
from Xyce .prn file.
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10. Guidance for
Running Xyce in Parallel

Chapter Overview
This chapter gives guidance on how to run a parallel version of Xyce. It includes the
following sections:

� Section 10.1, Introduction

� Section 10.2, Mechanics

� Section 10.3, Problem Size

� Section 10.4, Linear Solver Options

� Section 10.5, Transformation Options

131



XyceTM Users’ Guide Guidance for Running Xyce in Parallel

10.1 Introduction
Xyce has been designed, from the ground up, to support a message-passing parallel im-
plementation. As such, Xyce is unique among circuit simulation tools, and many of the
issues pertinent to running in parallel are still research issues. However, Xyce is now
mature enough that some general principles have emerged, for effectively running prob-
lems in a parallel environment. In addition to the information in this chapter, supplemental
information about Xyce parallel performance can be found in reference [13].

10.2 Mechanics
Parallel simulations must be run from the command line. Details of how to do this are given
in section 2.2.

10.3 Problem Size
Due to the overhead of interprocessor communication, running Xyce in parallel is only
useful for large circuit problems. Also, for any problem size, there is an optimal number of
processors. As one increases the processor count, the amount of communication required
increases and the work per processor decreases. This increase in communication will slow
a simulation down, while the reduction in work per processor will have the reverse effect.
If the number of processors is too large, the benefit of distributing the problem will be
outweighed by the high cost of communication overhead. Such a limit exists for every size
of problem, and increasing the processor count beyond this point is counterproductive.
This issue is most pronounced for platforms with a high communication cost, such as
Beowulf clusters.

Smallest Possible Problem Size

Circuits are made up of a discrete set of components (voltage nodes, devices, etc.). To run
in parallel, it is preferable that Xyce be able to put at least one discrete part of the problem
on each processor. In practice, this means that the number of processors should be less
than the number of nodes in the circuit. Xyce is capable of simulating smaller problems,
but it is not recommended, due to solver instabilities.
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Ideal Problem Size

To take full advantage of Xyce’s parallel capability, the problem should be relatively large.
A good metric for estimating how many processors one should use is the number of de-
vices per processor. The ideal number of devices per processor is machine and problem
dependent. For machines such as SGI Challenger platforms, with relatively fast commu-
nication speeds in comparison to processor performance, reasonable speedups can be
seen for 100’s of devices per processor. For Beowulf clusters with relatively slow commu-
nication speeds in comparison to processor performance, 1000’s of devices per processor
are required to achieve reasonable speedups in parallel. These numbers are problem-
dependent, as the effectiveness of the load balance and partitioning can vary substantially
for different circuits.

10.4 Linear Solver Options

There are several different linear solvers available in Xyce version 5.2; they are:

� The AztecOO iterative solver library.

� KLU

� SuperLU.

For Xyce version 5.2, AztecOO is the only fully parallel solver available. However, both KLU
and SuperLU are available with the parallel version of Xyce. With the later two solvers, the
problem will be ”assembled” in parallel, but the linear system will be solved in serial on
processor 0. This can be quite effective for smaller parallel problems of a few thousand
devices or less.

The solver can be specified through the .OPTIONS LINSOL control line in the netlist. By
default, the parallel version of Xyce uses AztecOO as the linear solver. Conversely, a
serial version of Xyce uses KLU as its default linear solver. To use a solver other than the
default the user needs to add the option “TYPE=<solver>” to the .OPTIONS LINSOL control
line in the netlist, where <solver> is ’KLU,’ ’SUPERLU’,’ or ’AZTECOO’.
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NOTE: An important caveat is that the performance and convergence of the
linear solver for parallel problems can be substantially less robust for some
circuits. This is a known issue with parallel iterative solution of linear prob-
lems. If Xyce is not performing as expected for these problems, please con-
sult the developer team.

AztecOO

AztecOO is a parallel, iterative, linear solver package in Trilinos. The iterative solver used
by Xyce is the Generalized Minimum Residual method, or GMRES. Some of the solver
parameters for GMRES can be altered through the ’.OPTIONS LINSOL’ control line in the
netlist. These parameters can have a significant impact on performance of Xyce, so con-
sult the developer team if you have any questions. Table 10.1 has a list of solver parameters
for AztecOO and their default values.

Option Description Default Value
AZ max iter Maximum allowed iterations 500
AZ tol Iterative solver (relative residual) tolerance 1.0e-12
AZ kspace Krylov subspace size 500
OUTPUT LS Write out linear systems to file every # solves 0

Table 10.1. AztecOO linear solver options.

AztecOO Preconditioners

Iterative linear solvers often require the assistance of preconditioners to efficiently com-
pute a solution of the linear system to the requested accuracy. In Xyce version 5.2, the
preconditioning interface has been expanded to allow the user to access multiple precon-
ditioning packages in Trilinos, like Ifpack and ML. As of this release, user support is only
being offered for the Ifpack preconditioning options and the default behavior from previous
releases has been maintained.

If modifications to the preconditioner are necesary, the preconditioner can be specified
through the ’.OPTIONS LINSOL’ control line in the netlist. Table 10.2 has a list of precondi-
tioner parameters and their default values. These parameters can have a significant impact
on performance of Xyce, so consult the developer team if you have any questions.
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Option Description Default Value
prec type Preconditioner Ifpack
AZ ilut fill ILU fill level 2.0
AZ drop ILU drop tolerance 1.0e-3
AZ overlap ILU subdomain overlap 0
AZ athresh ILU absolute threshold 0.0001
AZ rthresh ILU relative threshold 1.0001
USE IFPACK FACTORY Additive Schwarz w/ KLU subdomain solve 0 (false)
USE AZTEC PRECOND Use native ILU from AztecOO package 0 (false)

Table 10.2. AztecOO preconditioner options.

Common AztecOO Warnings

If Xyce is run with the verbosity enabled for the linear algebra package, it is not uncommon
to see warnings from AztecOO. These warnings usually indicate that the solver returned
unconverged due to some numerical issue.

NOTE: Getting AztecOO warnings does not mean that the entire simulation
has failed. Xyce, like all circuit simulators, uses a hierarchy of solvers, and
if the iterative linear solver fails, that often means that the nonlinear solver or
time integrator will then make adjustments and re-attempt the step. Getting
warnings like the ones described here is usually not cause for concern, and
the warnings can often be ignored. If the entire simulation eventually does
fail (i.e. gets a ‘ ‘time-step-too-small” error), then the warnings from AztecOO
might contain clues as to what went wrong. However, by themselves they are
usually benign.

The simplest reason for AztecOO to return unconverged would be when the maximum
number of iterations was reached, which results in this warning:

***************************************************************
Warning: maximum number of iterations exceeded without convergence
***************************************************************

Another reason that AztecOO may return unconverged is when the GMRES Hessenberg
matrix is ill-conditioned. This is usually a sign that the matrix and/or preconditioner is nearly

135



XyceTM Users’ Guide Guidance for Running Xyce in Parallel

singular. The resulting warning looks like:

***************************************************************
Warning: the GMRES Hessenberg matrix is ill-conditioned. This may
indicate that the application matrix is singular. In this case, GMRES
may have a least-squares solution.
***************************************************************

It is also common to lose accuracy when the matrix and/or preconditioner are nearly sin-
gular. GMRES relies on an estimate of the residual norm, called the recursive residual, to
determine convergence. The recursive residual is used instead of the actual residual for
computational efficiency. However, numerical issues can cause the recursive residual to
differ from the actual residual. When that situation is detected by AztecOO, and cannot be
rectified, this warning will be outputted:

***************************************************************
Warning: recursive residual indicates convergence
though the true residual is too large.

Sometimes this occurs when storage is overwritten (e.g. the
solution vector was not dimensioned large enough to hold
external variables). Other times, this is due to roundoff. In
this case, the solution has either converged to the accuracy
of the machine or intermediate roundoff errors occurred
preventing full convergence. In the latter case, try solving
again using the new solution as an initial guess.
***************************************************************

KLU

KLU is a serial, sparse direct solver native to the Amesos package in Trilinos and is the
default solver for serial versions of Xyce. KLU can be used in a parallel version of Xyce
as well, but this requires the linear system to be solved on one processor and the solu-
tion communicated back to all processors. As long as the linear system can fit on one
processor, KLU is often a superior approach to solving linear systems in parallel.

Some of the solver parameters for KLU can be altered through the ’.OPTIONS LINSOL’
control line in the netlist. These parameters can have a significant impact on performance
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of Xyce, so consult the developer team if you have any questions. Table 10.3 has a list of
solver parameters for KLU and their default values.

Option Description Default Value
KLU REPIVOT Recompute pivot order each solve 1 (true)
OUTPUT LS Write out linear systems to file every # solves 0 (false)
OUTPUT FAILED LS Write out failed linear systems to file 0 (false)

Table 10.3. KLU linear solver options.

SuperLU

SuperLU is a serial, sparse direct solver that has an interface in the Amesos package.
Similar to KLU, SuperLU can be used in a parallel version of Xyce, but the linear system
is solved on one processor. Xyce does not allow any modification to SuperLU’s solver
parameters at this time.

10.5 Transformation Options
Transformations are often used to permute the original linear system to one that is easier
for direct or iterative linear solvers. Xyce currently has many different permutations that
can by applied to remove dense rows and columns from a matrix, find a block triangular
form, or partition the linear system for improved parallel performance.

Partitioning the Linear System

Partitioning subdivides the circuit problem into sections that are then distributed to the
processors. A good partition can have a dramatic effect on the parallel performance of
circuit simulation. There are two key components to a good partition:

� Effective load balance.

� Minimizing communication overhead.
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An effective load balance ensures that the computational load of the calculation is equally
distributed among the available processors. Minimizing communication overhead seeks
to distribute the problem in a way that reduces the impact of underlying message passing
during the simulation run. For runs with a small number of devices per processor the
communication overhead becomes the critical issue, while for runs with larger numbers of
devices per processor the load balancing becomes more important.

Xyce currently has graph and hypergraph partitioning available. These partitioners are
provided via the Zoltan library of parallel partitioning heuristics that is integrated into Xyce.
Access to Zoltan is provided via the Epetra Extended or Isorropia packages in Trilinos.

Zoltan can be controlled through the ’.OPTIONS LINSOL’ control line in the netlist. Table
10.4 has the partitioning options and their default parameters. For parallel builds of Xyce,
Zoltan is available and enabled by default to use the Isorropia interface and graph parti-
tioning via ParMETIS. With Zoltan enabled, the linear system is statically load balanced,
at the beginning of the simulation, based on the graph of the Jacobian matrix. The local
system is also reordered based on nested dissection which should improve conditioning
and minimize fill.

Option Description Default Value
TR PARTITION Partitioning package 0 (none), serial,

2 (Isorropia), parallel
TR PARTITION TYPE Isorropia partitioner type GRAPH

Table 10.4. Partitioning options.

In Xyce version 5.2, the partitioning interface has been expanded to allow the user to
access multiple partitioners through Isorropia. Changing the partitioner provided through
Isorropia is done by adding the ’TR PARTITION TYPE’ option to the ’.OPTIONS LINSOL’ con-
trol line in the netlist. As of this release, there are two options for partitioning: graph
(’TR PARTITION TYPE=GRAPH’) and hypergraph (’TR PARTITION TYPE=HYPERGRAPH’). Alter-
natively, to access the deprecated interface to Zoltan’s graph partitioning through Epe-
traExt, use ’TR PARTITION=1’ on the ’.OPTIONS LINSOL’ control line.

These techniques can be very effective for improving the efficiency of the iterative linear
solvers. See the Zoltan User Guide [14] for more details.

Occasionally it can be desirable to turn off the partitioning option, even for parallel simu-
lations. To do so, the users should add the option ’.OPTIONS LINSOL TR PARTITION=0’ to
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disable Zoltan. In general, this is only recommended if the user wants to run a very small
circuit in parallel.

Singleton Filtering of the Linear System

Singleton filtering is a transformation that reduces the linear system through removal of all
rows and columns with single non-zero entries. The values associated with these removed
entries can be resolved as pre/post linear solve operations. A by-product of this transfor-
mation is a more tractable and sparse linear system for both the load balancing and linear
solver algorithms. This functionality is turned on by adding the ’TR SINGLETON FILTER=1’
option to the ’.OPTIONS LINSOL’ control line in the netlist.

AMD Ordering of the Linear System

Approximate Minimum Degree (AMD) ordering is a symmetric permutation that reduces
the fill-in for a Cholesky factoriztion. If given a nonsymmetric matrix A, the transformation
computes the AMD ordering of A + AT . For parallel builds of Xyce, AMD ordering is en-
abled by default. Otherwise, the AMD transformation is turned on by adding the ’TR AMD=1’
option to the ’.OPTIONS LINSOL’ control line in the netlist.

Permuting the Linear System to Block Triangular Form

The block triangular form (BTF) permutation is often useful for direct or iterative solvers,
enabling a more efficient computation of the linear system solution. In particular, the BTF
permutation has shown promise when it is combined with an incomplete factorization pre-
conditioner, such as ILU, in the simulation of circuits with unidirectional flow.

In Xyce version 5.2, a new transformation is being offered to complement the new precondi-
tioner interface, ’TR GLOBAL BTF’. The global BTF transformation computes the permutation
of the linear system to BTF form, as well as partitions the linear system. The partitioning
can be a simple linear distribution of block rows, ’TR GLOBAL BTF=1’, or a hypergraph par-
titioning of block rows, ’TR GLOBAL BTF=2’. Since the global BTF transformation includes
elements of other tranformations, it is imperative that some other linear solver options be
set. To use the global BTF, the linear solver control line in the netlist should at least contain:

.OPTIONS LINSOL TR_GLOBAL_BTF=<1,2> TR_SINGLETON_FILTER=1
+ TR_AMD=0 TR_PARTITION=0

139



XyceTM Users’ Guide Guidance for Running Xyce in Parallel

These parameters can have a significant impact on performance of Xyce, so consult the
developer team if you have any questions.
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11. Handling Power Node
Parasitics

Chapter Overview
This chapter includes the following sections:

� Section 11.1, Power Node Parasitics

� Section 11.2, Two Level Algorithms Overview

� Section 11.3, Examples

� Section 11.4, Restart

141



XyceTM Users’ Guide Handling Power Node Parasitics

11.1 Power Node Parasitics
Parasitic elements (R, L, C) are frequently required for circuit simulations to capture impor-
tant circuit behavior. Most parasitic elements (interconnect, etc.) can be added to netlists
without causing any difficulties for the Xyce solvers. Small circuits in particular are very
robust to the addition of parasitic elements. Larger circuits, however, that must be sim-
ulated in parallel will in general tend to have more solver difficulties with the addition of
parasitic devices. Of particular note are parasitic elements attached to the power and/or
ground nodes of large digital circuits. An example of this is shown in figure 11.1. As these
nodes tend to be highly connected, they can potentially have very high impact on solver
difficulties.

One of the parallel algorithms used by Xyce is called singleton removal [13]. This algorithm
is applied at the linear solver level and is crucial for getting many large circuits to run in
parallel. This algorithm takes advantage of the fact that, in circuit simulation, some solution
values are available explicitly, rather than being a quantity that needs to be calculated as
the solution to a particular equation. In circuit simulation, such quantities are usually the
values of independent sources. For instance, the presence of an independent voltage
source at a particular node in a circuit fixes the voltage at that node to be the value of
the independent source; therefore, equations reflecting the value of the voltage at that
particular node do not have to be added to the set of linear equations that are used (in
part) to determine the voltages at all nodes in the circuit. The technique of fixing such
node voltages without including them in the rest of the linear solve can be handled in a
preprocessing phase referred to as the singleton removal phase.

When simulating in parallel, singleton removal is crucial since some voltage sources (espe-
cially power supplies in digital circuits) are connected to hundreds or thousands of circuit

Figure 11.1. Power node parasitics example. An RLC network
sits between the VDD, VSS sources and the main circuit, so these
highly connected nodes cannot be removed with a singleton filter.
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nodes. In parallel, this presents a big problem because a large number of connections
can often mean a communication bottleneck during the linear solve. The use of singleton
removal eliminates that bottleneck.

While singleton removal can result in a great improvement for circuits with ideal power
supplies, for circuits with non-ideal power supplies, the communication bottleneck remains.
Once parasitic elements are placed between the power supply and the rest of the circuit, it
is only the voltage at the circuit node which is directly connected to the independent source
that can be removed via singleton removal. All of the other nodes that are connected to
this independent source through parasitic elements have voltages that must now be solved
for directly.

11.2 Two Level Algorithms Overview

Fortunately there is a workaround in Xyce [15] which allows power node parasitics to be
included in large circuits without breaking singleton removal. The workaround requires the
use of a two-level Newton solve, in which the problem is broken up into two very separate
pieces. Each piece is, for the most part, treated as an entirely separate circuit with minimal
coupling terms linking the pieces together.

For power-node problems, two-level users will typically split the netlist into ”top” and ”inner”
netlists. The top netlist should contain the power node parasitics and the ideal voltage
sources, and very little else. The inner circuit should contain the rest of the circuit. The two
circuits are coupled through a ”EXT” (external) device in the top circuit, and two or more
independent voltage sources on the inner circuit. The values on the inner voltages are
imposed from the top circuit, and the currents and conductances of the EXT device come
from the inner circuit.

Xyce will treat the two circuits separately, constructing a different linear system for each
one. As such, the inner circuit will appear to have independent sources, and the singleton
removal algorithm will still work.

The two-level Newton algorithm has been in the literature since (at least) the 1980’s, al-
though in the past it has mostly been applied to circuit-device simulation. For a mathemat-
ical description, see [16] and [17]. For more information about the Xyce implementation,
see [15].
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11.3 Examples

THIS CIRCUIT IS THE TOP PART OF A TWO LEVEL EXAMPLE.
* compTop.cir - BSIM3 Transient Analysis

YEXT y1 DD1 SS1 externcode=xyce netlist=compInner.cir
Vdd DDorig 0 5.0
Vss SSorig 0 0.0

.options linsol type=klu

.options timeint abstol=1.0e-6 reltol=1.0e-3

* PARASITICS
l Lwirevdd DDorig Ny .50n
l Lwirevss SSorig Nx .50n
R Rbw Ny DD1 50m
R Rwi Nx SS1 50m

.tran 0.01ns 60ns

.print tran v(DD1) v(SS1) i(Vdd)

.END

Figure 11.2. Example two-level top netlist.

Explanation and Guidance

An example of a circuit that uses the two level algorithm is given in figures 11.2 and 11.3.
The top circuit (compTop.cir) is given in the first figure, and this top circuit invokes the
inner circuit (compInner.cir) with the extern device, y1. To run this circuit, the user will only
specify the top circuit on the command line:

Xyce compTop.cir <return>

The extern device (YEXT y1 sits between the contents of compTop.cir and compInner.cir.
It is connected to two nodes in the top level circuit, DD1 and SS1. From the perspective of
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THIS CIRCUIT IS THE INNER PART OF A TWO LEVEL EXAMPLE.
* compInner.cir - BSIM3 Transient Analysis
M1 Anot A DD1 DD1 PMOS w=3.6u l=1.2u
M2 Anot A SS1 SS1 NMOS w=1.8u l=1.2u
M3 Bnot B DD1 DD1 PMOS w=3.6u l=1.2u
M4 Bnot B SS1 SS1 NMOS w=1.8u l=1.2u
M5 AorBnot SS1 DD1 DD1 PMOS w=1.8u l=3.6u
M6 AorBnot B 1 SS1 NMOS w=1.8u l=1.2u
M7 1 Anot SS1 SS1 NMOS w=1.8u l=1.2u
M8 Lnot SS1 DD1 DD1 PMOS w=1.8u l=3.6u
M9 Lnot Bnot 2 SS1 NMOS w=1.8u l=1.2u
M10 2 A SS1 SS1 NMOS w=1.8u l=1.2u
M11 Qnot SS1 DD1 DD1 PMOS w=3.6u l=3.6u
M12 Qnot AorBnot 3 SS1 NMOS w=1.8u l=1.2u
M13 3 Lnot SS1 SS1 NMOS w=1.8u l=1.2u
MQLO 8 Qnot DD1 DD1 PMOS w=3.6u l=1.2u
MQL1 8 Qnot SS1 SS1 NMOS w=1.8u l=1.2u
MLTO 9 Lnot DD1 DD1 PMOS w=3.6u l=1.2u
MLT1 9 Lnot SS1 SS1 NMOS w=1.8u l=1.2u
CQ Qnot 0 30f
CL Lnot 0 10f

Vconnect0000 DD1 0 0
Vconnect0001 SS1 0 0

Va A 0 pulse(0 5 10ns .1ns .1ns 15ns 30ns)
Vb B 0 0

.model nmos nmos (level=9)

.model pmos pmos (level=9)

.options linsol type=klu

.options timeint abstol=1.0e-6 reltol=1.0e-3

.tran 0.01ns 60ns

.print tran v(a) v(b) 1.0+v(9) 1.0+v(8)

.END

Figure 11.3. Example two-level inner netlist.
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compTop.cir, the YEXT y1 device just looks like a nonlinear two-terminal resistor, which is
the equivalent of the entire inner circuit.

In the inner circuit, the nodes DD1 and SS1 are applied though the independent sources
Vconnect0000 and Vconnect0001. By convention, the inner circuit must contain and inde-
pendent voltage source for each node to which the EXT device is connected. The default
naming convention requires that these sources be named vconnectxxxx, with xxxx being
a four digit integer starting at 0000.

Note that the .tran statement on the inner circuit must match the .tran statement on the
top circuit. The same is true for .DC analysis.

Note also that both circuit files have their own .print statements. That means that they
will both produce *.prn output files.

The coupling between the top and inner layers requires extra linear solves, so when using
this algorithm the code will run more slowly. In general, one can usually expect a factor of
two slowdown, for circuits that can be run either as conventional or two-level simulations.
So, in practice this algorithm should only be applied when it is really needed (i.e., when
conventional simulations fail).

Finally, when using this method, one must take particular care with file names. In practice,
a Xyce user may frequently change netlist file names to reflect new details about the run.
When this happens, the name of the netlist invoked on the YEXT y1 line must be changed.
Failure to do so may result in using the wrong file for the inner simulation.

11.4 Restart
Restart works with the two-level algorithm. However, as the two-level algorithm involves
two separate netlist input files, two-level restart requires a separate restart file for each
phase of the problem. So, the two files (for example compTop.cir and compInner.cir) need
to have .options restart statements, and the statements in the two files need to be
consistent with each other.

Currently, the code does not make any attempt to check if the ”.options restart” statement
in the top file is consistent with the ”.options restart” statement in the inner file. It is up to
the user to enforce this.
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12. Specifying Initial
Conditions

Chapter Overview
This chapter includes the following sections:

� Section 12.1, Initial Conditions Overview

� Section 12.2, Device Level IC= Specification

� Section 12.3, .IC and .DCVOLT Initial Condition Statements

� Section 12.4, .NODESET Initial Condition Statements

� Section 12.5, .SAVE Statements

� Section 12.6, DCOP Restart

� Section 12.7, UIC and NOOP
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12.1 Initial Conditions Overview
There are several different initial condition options available in Xyce. There are several
reasons why a user may want to set an initial condition. These include, but are not limited
to:

� Improving the robustness of the DCOP solution.

� Optimizing performance by reusing DCOP solution of a previous run to start new
transient runs.

� Setting an initial state for a digital circuit.

� Initiating an oscillator circuit.

As noted, setting initial conditions can be particularly useful for multi-state digital circuits,
to preset the initial state. An example result which demonstrates how initial conditions can
be used to set the state of a digital circuit is shown in Fig. 12.1. In this case, obtaining
the state purely through transient simulation can take a very long time and often is not
practical.

Figure 12.1. Example result with (left) and without (right) IC=
preset. The preset example starts in the initial state directly out
of the DCOP calculation, while the non-preset example requires a
long transient to equilibrate.
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12.2 Device Level IC= Specification
Many devices in Xyce support setting initial junction voltage conditions on the device in-
stance line with the IC= keyword. This has frequently been used to set the state of digital
circuits. A very simple inverter example that demonstrates usage of IC= on a BSIMSOI
device is shown in Fig. 12.2.

While many circuit simulators have a similar IC= capability, the Xyce implementation differs
in some important respects. For any device that has an IC= statement, Xyce enforces
the junction drop in parallel with the device junction as a voltage source in parallel with
the device. This parallel voltage source is applied through the DCOP calculation, and is
then removed prior to the beginning of the transient. This strongly enforces the requested
junction drop, meaning that if the DCOP converges, the requested voltage drop will in the
solution. In many other circuit codes, IC= is applied as a weaker constraint, with the intent
of improving DCOP calculation robustness.

Currently, IC= can be applied to the following devices: BSIM3, BSIM4, BSIMSOI, Capacitor
and Inductor. This capability may be added to other devices in the future, depending on
user requests.
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MOS LEVEL=10 INVERTER WITH IC=

.subckt INV IN OUT VDD GND
MN1 OUT IN GND GND GND NMOS w=4u l=0.15u IC=2,0
MP1 OUT IN VDD GND VDD PMOS w=10u l=0.15u
.ends

.tran 20ns 30us

.print tran v(vout) v(in)+1.0 v(1)

VDDdev VDD 0 2V
RIN IN 1 1K
VIN1 1 0 2V PULSE (2V 0V 1.5us 5ns 5ns 1.5us 3.01us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
XINV1 IN VOUT VDD 0 INV
.MODEL NMOS NMOS ( LEVEL = 10 )
.MODEL PMOS PMOS ( LEVEL = 10 )

.END

Figure 12.2. Example netlist with device-level IC=.
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12.3 .IC and .DCVOLT Initial Condition
Statements

.IC and .DCVOLT are equivalent methods for specifying initial conditions. How they are
applied depends on whether the UIC parameter is present on the .TRAN line. If UIC is not
specified, then the conditions specified by a .IC and .DCVOLT statements are enforced
throughout the DCOP phase, insuring that the specified values will be the solved values
at the end of the DCOP calculation. Any unspecified variables are allowed to find their
computed values, consistent with the imposed voltages.

RC circuit
.ic v(1)=1.0
c1 1 0 1uF
R1 1 2 1K
v1 2 0 0V
.print tran v(1)
.tran 0 5ms
.options timeint reltol=1e-6 abstol=1e-6
.end

Figure 12.3. Example netlist with .IC. Without the .IC statement,
the capacitor is not given an initial charge, and the signals in tran-
sient are all flat. With the .IC statement, it has an initial change
which then decays in transient.

If UIC is specified on the .TRAN line, then the DCOP calculation is skipped altogether, and
the values specified on .IC and .DCVOLT lines are simply used as the initial values for the
transient calculation. Any unspecified values are set to zero.

For both the UIC and non-UIC cases, any specified values that do not correspond to existing
circuit variables are ignored. Also, currently the .IC and .NODESET capability can only set
voltage values, not current values.

Syntax
.IC V(node1) = val1 <V(node2) = val2> ...
.DCVOLT V(node1) = val1 <V(node2) = val2> ...
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where: val1, val2, ... specify nodal voltages and node1, node2, ... specify node numbers.

Example
.IC V(1) = 2.0 V(A) = 4.5
.DCVOLT 1 2.0 A 4.5

A more complete example (showing a full netlist) is given in Fig. 12.3.
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12.4 .NODESET Initial Condition
Statements

.NODESET is similar to .IC, except that Xyce enforces the specified conditions less strongly.
For .NODESET simulations, Xyce does two nonlinear solves for the DCOP condition. For
the first solve, the .NODESET values are enforced throughout the solve, similar to .IC. For
the second solve, the result of the first solve is used as an initial guess, and all the values
are allowed to float and eventually obtain their unconstrained, self-consistent values. As
such, the computed values will not necessarily match the specified values. .NODESET is
generally used to help with difficult nonlinear solves, but should only be used if the user
wants a fully self-consistent initial DCOP computation. For an inconsistent initial condition,
one should use .IC instead.

.NODESET V(node1) = val1 <V(node2) = val2> ...

.NODESET node1 val1 <node2 val2>

where: val1, val2, ... specify nodal voltages and node1, node2, ... specify node numbers.

Example
.NODESET V(1) = 2.0 V(A) = 4.5
.NODESET 1 2.0 A 4.5
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12.5 .SAVE Statements
Operating point information can be stored using the .SAVE statements, and then reused to
start subsequent transient simulations. Using .SAVE will result in solution data being stored
in a text file, comprised of .NODESET or .IC statements. This file can be applied to other
simulations using .INCLUDE.

The form of .SAVE is as follows:

.SAVE <TYPE=type keyword> <FILE=save file> <LEVEL=level keyword> <TIME=save time>

where:

type keyword can be set to “NODESET” or “IC”. By default, it will be “IC”.

save file is the user specified output file name for the *.ic file. If this is not specified, Xyce
will use netlist.cir.ic.

level keyword is an Hspice compatibility parameter. Currently, Xyce only supports “ALL”
and ”NONE”.

save time is an Hspice compatibility parameter. Currently it is unsupported, and Xyce can
only output the *.ic file at time=0.0.
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12.6 DCOP Restart
DCOP restart is a capability that is very similar to .NODESET and .SAVE used in combination.
Similar to .NODESET, starting a simulation with DCOP restart will result in Xyce performing
two nonlinear solves. The first solve strictly enforces the previous answer, and the second
solve allows all the values to float and obtain their unconstrained solution. The second
solve relies on the results of the first solve as an initial guess.

If the UIC keyword appears on the .TRAN line, then the contents of the DCOP restart file
will be applied as the initial condition and the DCOP calculation will be skipped altogether.
This is, of course, the same as for .IC and .NODESET.

While .NODESET and DCOP restart are very similar, there are a few differences. The
biggest difference is the handling of voltage source voltages and currents. DCOP restart
will attempt to restart from all the variables of the simulation, including voltage source vari-
ables. .NODESET, on the other hand, will ignore specified variables associated with voltage
sources, and explicitly does not allow currents to be set. In general, voltage sources are
constraints in and of themselves, so re-constraining them can cause singular matrices. To
avoid this issue, DCOP restart, makes changes to the linear system to prevent matrices
from being singular.

Saving a DCOP restart file

To create a DCOP restart file, a .DCOP output=filename line needs to be added to the
netlist:

.dcop output=saved.op

This will result in the file “saved.op” being produced immediately after the operating point
calculation. The produced file is similar to a *.ic file that can be produced by .SAVE, but
with different format. Similar to the the *.ic file, it is a text file, and has two columns. One
column has the variable name, the other column the value of that variable.

Loading a DCOP restart file

To use a DCOP restart file, a .DCOP input=filename line needs to be added to the netlist:
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.dcop input=saved.op

If the specified file does not exist in the local directory, then Xyce will simply ignore the
.DCOP statement and run normally.
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12.7 UIC and NOOP
As noted earlier, the UIC key word on the TRAN line will disable the DCOP calculation,
and will result in Xyce immediately going to transient. If .IC, .NODESET, or .DCOP input
is specified, then the transient calculation will use the specified initial values as the initial
starting point. The NOOP keyword works in exactly the same way as UIC.

pierce oscillator
c1 1 0 100e-12
c2 3 0 100e-12
c3 2 3 99.5e-15
c4 1 3 25e-12
l1 2 4 2.55e-3
r1 1 3 1e5
r2 3 5 2.2e3
r3 1 4 6.4
v1 5 0 12
Q1 3 1 0 NBJT
.MODEL NBJT NPN (BF=100)
.print tran v(2) v(3)

.tran 1ns 1us UIC

.ic v(2)=-10000.0 v(5)=12.0

Figure 12.4. Example netlist with UIC. This circuit is a pierce
oscillator, and it will only oscillate if the operating point is skipped.
This oscillator will take a really long time to achieve its steady-
state amplitude if the .IC statement is not included. By including
the .IC statement, the amplitude of node 2 is preset to a value
close to its final steady-state amplitude. Note, the transient in this
example only goes for 10 cycles as a demonstration. In general,
the time scales for this oscillator are much longer than that and
require millions of cycles.

Example
.tran 1ns 1us UIC
.tran 1ns 1us NOOP
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Some circuits, particularly oscillator circuits, will only function properly if the operating point
is skipped, as they need an inconsistent initial state to oscillate. A pierce oscillator example
is given in Fig. 12.4.
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13. Working with
.PREPROCESS
Commands

Chapter Overview
This chapter includes the following sections:

� Section 13.1, Introduction

� Section 13.2, Ground Synonym Replacement

� Section 13.3, Removal of Unused Components

� Section 13.4, Adding Resistors to Dangling Nodes
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13.1 Introduction
In an effort to make Xyce more compatible with other commercial circuit simulators (e.g.,
HSPICE), some optional tools have been added to increase Xyce’s netlist processing ca-
pabilities. These options, which occur toward the beginning of a simulation, have been
incorporated not only to make Xyce more compatible with different (i.e. non-Xyce) netlist
syntax, but also to help detect and remove certain singular netlist configurations that can
often cause a Xyce simulation to fail. Because all of the commands we describe below
occur as a precursory step to setting up a Xyce simulation, they are all invoked in a netlist
file via the keyword .PREPROCESS. In this chapter, we describe each of the different func-
tionalities that can be invoked via a .PREPROCESS statement in detail and provide examples
to illustrate its use.

13.2 Ground Synonym Replacement
In certain versions of Spice, keywords such as GROUND, GND, and GND! can be used as
node names in a netlist file to represent the ground node of a circuit. Xyce, however, only
recognizes node 0 as an official name for ground. Hence, if any of the prior node names
is encountered in a netlist file, Xyce will treat these as different nodes from ground. To
illustrate this point, consider the netlist of Fig. 13.1. When the node Gnd is encountered in
the definition of resistor R3, Xyce instantitates this as a new node. The schematic diagram
corresponding to this netlist (depicted in Fig. 13.2) shows that the resistor R3 is “floating”
between node 2 and a node which has only a single device connection, node Gnd. When
the netlist of Fig. 13.1 is executed in Xyce, the voltage V(2) will evaluate to 0.5V.

If it is the case that one wishes for Gnd to be treated the same as node 0 in the above exam-
ple, one can use the netlist of Fig. 13.3 instead. The statement .PREPROCESS REPLACEGROUND
TRUE has the following effect: if this statement is present in a netlist, Xyce will treat any
nodes named GND, GND!, GROUND, or any capital/lowercase variant of these keywords (e.g.,
gROunD) as synonyms for node 0. Hence, according to Xyce, the netlist of Fig. 13.3 corre-
sponds to the schematic diagram of Fig. 13.4, and the voltage V(2) will evaluate to 0.33V.

A few comments are in order. First, only one .PREPROCESS REPLACEGROUND statement is
allowed per netlist file (this is to prevent the user from setting REPLACEGROUND to TRUE on
one line and then to FALSE on another). Secondly, there is currently no way to differentiate
between different keywords, i.e., it is not possible to treat GROUND as a synonym for node
0 while allowing GND to represent an independent node. If REPLACEGROUND is set to TRUE,
both of these keywords will be treated as node 0 if present in a netlist file.
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Circuit with "floating" resistor R3

V1 1 0 1
R1 1 2 1
R2 2 0 1
R3 2 Gnd 1

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 13.1. Example netlist where Gnd is treated as being dif-
ferent from node 0.

.........................................................................................................................................................
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Figure 13.2. Circuit diagram corresponding to the netlist of Fig.
13.1 where node Gnd is treated as being different from node 0.
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Circuit where resistor R3 does *not* float

V1 1 0 1
R1 1 2 1
R2 2 0 1
R3 2 Gnd 1

.PREPROCESS REPLACEGROUND TRUE

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 13.3. Example netlist where Gnd is treated as a synonym
for node 0.
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Figure 13.4. Circuit diagram corresponding to Fig. 13.3 where
node Gnd is treated as a synonym for node 0.
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13.3 Removal of Unused Components
Consider a slight variant of the circuit in Fig. 13.3 with the netlist given in Fig. 13.5. Here,
the resistor R3 is connected in a peculiar configuration: both terminals of the resistor are
tied to the same circuit node, as is illustrated in Fig. 13.6. Clearly, the presence of this
resistor has no effect on the other voltages and currents in the circuit since, by the very
nature of its configuration, it has no voltage across it and, hence, does now draw any
current. Therefore, in some sense, the component can be considered as “unused”. It
should be noted here that the presence of a resistor such as R3 is rarely/never introduced
by design. Most times, the presence of such components is the result of either human or
automated error.

Circuit with an unused resistor R3

V1 1 0 1
R1 1 2 1
R2 2 0 1
R3 2 2 1

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 13.5. Netlist with a resistor R3 whose device terminals
are both the same node (node 2).

While the presence of the resistor R3 in the above example does not change the behavior
of the circuit, it does add an additional component to the netlist which Xyce must deal with
when solving for the voltages and currents in the circuit. If the number of such components
in a given netlist is large, it is potentially desirable to remove them from the netlist to ease
the burden on Xyce’s solver engines. This, in turn, can help to avoid possible convergence
issues. For example, even though the netlist in Fig. 13.5 will run properly in Xyce, the
netlist of Fig. 13.7 will abort. The voltage source V2 attempts to place a 1V difference
between its two device terminals; however, since both nodes of the voltage source are the
same, the voltage source is effectively shorted.

In order to prevent situations such as the above from occuring, Xyce includes the com-
mand:
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Figure 13.6. Circuit of Fig. 13.5 containing a resistor R3 whose
terminals are tied to the same node (node 2).

Circuit with improperly connected voltage source V2

V1 1 0 1
R1 1 2 1
R2 2 0 1
V2 2 2 1

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 13.7. Circuit with an improperly connected voltage source
V2.
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.PREPROCESS REMOVEUNUSED <component list>

where <component list> is a list of device types separated by commas. For each device
type specified in the list, Xyce will check for instances of that device type for which all of
the device terminals are connected to the same node. If such a device is found, Xyce will
remove that device from the netlist. For instance, if we execute the netlist of Fig. 13.8,
Xyce will seek out resistors and capacitors whose device terminals are connected to the
same node and remove them from the netlist. This causes the resistor R3 to be removed
from the netlist, and the schematic of the resulting circuit that Xyce simulates is shown in
Fig. 13.9. Note that presence of the “C” in the REMOVEUNUSED statement does not cause
Xyce to abort even though there are no capacitors in the netlist. Also, as in the case of a
REPLACEGROUND statement, only one .PREPROCESS REMOVEUNUSED line may be present per
netlist, or Xyce will abort.

A complete list of devices which can be removed via a REMOVEUNUSED statement is listed in
Table 13.1. Note that in the case of MOSFETs and BJTs, three device terminals must be
the same (the gate, source, and drain in the case of a MOSFET and the base, collector,
and emitter in the case of a BJT) in order for an instance of either device to be removed
from the netlist.

Circuit with improperly connected voltage source V2

V1 1 0 1
R1 1 2 1
R2 2 0 1
R3 2 2 1

.PREPROCESS REMOVEUNUSED R,C

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 13.8. Circuit with an “unused” resistor R3 that gets re-
moved from the netlist.

Keyword Device Type
C Capacitor
D Diode
I Independent Current Source
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Keyword Device Type
L Inductor
M MOSFET
Q BJT
R Resistor
V Independent Voltage Source

Table 13.1: List of keywords and device types which can be used
in a .PREPROCESS REMOVEUNUSED statement.

13.4 Adding Resistors to Dangling
Nodes

Consider the netlist of Fig. 13.10 and the corresponding schematic of Fig. 13.11. Nodes
3 and 4 of the netlist are what we will henceforth refer to as dangling nodes. We say
that node 4 dangles because it is only connected to the terminal of a single device, while
we say that node 3 dangles because it has no DC path to ground. The first of these
situations—connection to a single device terminal only—can arise, for example, in a netlist
which contains nodes representing output pins that are not connected to a load device. For
instance, the resistance R2 in Fig. 13.10 could represent the resistance of an output pin of a
package that is meant to drive resistive loads. Hence, an actual physical implementation of
the circuit of Fig. 13.11 would normally include a resistor between node 4 and ground, but,
in creating the netlist, the presence of such an output load has been (either intentionally or
unintentionally) left out.

The second situation—where a node has no DC path to ground—is sometimes an ef-
fect that is purposely incorporated into a design (e.g., the design of switched capacitor
integrators—see, e.g., Chapter 10 of [18]), but it is also oftentimes the result of some form
of error in the process of creating the netlist. For instance, when graphical user inter-
faces (GUIs) are used to create circuit schematics which are then translated into netlists
via software, one very common unintentional error is to fail to connect two nodes which
are intended to be connected. To illustrate this point, consider the schematic of Fig. 13.12.
The schematic seems to indicate that the lower terminal of resistor R2 should be connected
to node 3, but this is in fact not the case since there is a small gap between node 3 and
the line which is intended to connect node 3 to the resistor. Such an error can often go
unnoticed when creating a schematic of the netlist in a GUI. Thus, when the schematic is
translated into a netlist file, the resulting netlist would not connect the resistor to node 3
and would instead create a new node at the bottom of the resistor, resulting in the circuit
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Figure 13.9. Circuit of Fig. 13.8 where the resistor R3 has been
removed via the .PREPROCESS REMOVEUNUSED statement.

depicted in Fig. 13.11.

While neither of the above situations is necessarily threatening (the netlist of Fig. 13.10 will
successfully run to completion in Xyce), there are times when it is desirable to somehow
make a dangling node not dangle. For instance, returning to the example in which the
resistor R2 represents the resistance of an output pin, it may be the case that we wish to
simulate the circuit when a 1K load is attached between node 4 and ground in Fig. 13.11. In
the case where a node has no DC path to ground, the situation is slightly more dangerous
if, for instance, the node in question is also connected to a high-gain device such as the
gate of a MOSFET. Since the DC gate bias has a great impact on the DC current travelling
through the drain and source of the transistor, not having a well-defined DC gate voltage
can greatly degrade the simulated performance of the circuit.

In both of the prior examples, the only true way to “fix” each of these issues is to find all the
dangling nodes in a particular netlist file and to augment the netlist at/near these nodes to
obtain the desired behavior. If it is the case however, that the number of components in
a circuit is very large (say on the order of hundreds of thousands of components), man-
ually augmenting the netlist file for each dangling node becomes a practical impossibility
if the number of such nodes is large. Hence, it is desirable for Xyce to be capabable of
automatically augmenting netlist files so as to help remove dangling nodes from a given
netlist. The command .PREPROCESS ADDRESISTORS is designed to do just this. Con-
sider the netlist of Fig. 13.13. Assuming that this netlist is stored in the file filename, the
.PREPROCESS ADDRESISTORS statements will cause Xyce to create a new netlist file called
filename xyce.cir that is depicted in Fig. 13.14. The line .PREPROCESS ADDRESISTORS
NODCPATH 1G instructs Xyce to create a copy of the netlist file which contains a set of re-
sistors of value 1G that are connected between ground and nodes which currently have
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Circuit with two dangling nodes, nodes 3 and 4

V1 1 0 1
R1 1 2 1
C1 2 3 1
C2 3 0 1
R2 2 4 1

.DC V1 0 1 0.1

.PRINT DC V(2)

.END

Figure 13.10. Netlist of circuit with two dangling nodes, nodes 3
and 4.

no DC path to ground. Similarly, the line .PREPROCESS ADDRESISTORS ONETERMINAL 1M
instructs Xyce to add to the same netlist file a set of resistors of value 1M which are con-
nected between ground and devices that are connected to only one terminal. The resistor
RNODCPATH1 of Fig. 13.14 achieves the first of these goals while RONETERM1 achieves the
second. A schematic of the resulting circuit that is represented by the netlist in Fig. 13.14
is shown in Fig. 13.15

Some general comments regarding the use of .PREPROCESS ADDRESISTOR statements:

• Xyce does not terminate immediately after the netlist file is created. In other words,
if Xyce is run on the netlist filename of Fig. 13.13, it will attempt to execute this
netlist as given (i.e., it tries to simulate the circuit of Fig. 13.11) and generates the file
filename xyce.cir as a biproduct. It is important to point out that the resistors that
are added at the bottom of the netlist file filename xyce.cir do not get added to
the original netlist when Xyce is running on the file filename. If one wishes to sim-
ulate Xyce with these resistors in place, one must run Xyce on filename xyce.cir
explicitly.

• The naming convention for resistors which connect to ground nodes which do not
have a DC path to ground is RNODCPATH<i>, where i is an integer greater than 0;
the naming convention is similar for nodes which are connected to only one de-
vice terminal (i.e., of the form RONETERM<i>). It should be noted that Xyce will not
change this naming convention if a resistor with one of the above names already
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Figure 13.11. Schematic of netlist in Fig. 13.10.
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Figure 13.12. Schematic of a circuit with an incomplete connec-
tion between the resistor R2 and node 3.

exists in the netlist. Hence, if a resistor with the name RNODCPATH1 exists in netlist
file filename, and Xyce detects that there is a node in this netlist file that has no DC
path to ground, Xyce will add another resistor with name RNODCPATH1 to the netlist file
filename xyce.cir (assuming that either .PREPROCESS ADDRESISTORS NODCPATH or
.PREPROCESS ADDRESISTORS ONETERMINAL are present in filename). If Xyce is sub-
sequently run on filename xyce.cir, it will exit in error due to the presence of two
resistors with the same name.

• Both of the commands .PREPROCESS ADDRESISTORS NODCPATH and .PREPROCESS
ADDRESISTORS ONETERMINAL do not have to be simultaneously present in a netlist
file. The presence of either command will generate a file filename xyce.cir, and
the presence of both will not generate two separate files. As with other .PREPROCESS
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Circuit with two dangling nodes, nodes 3 and 4

V1 1 0 1
R1 1 2 1
C1 2 3 1
C2 3 0 1
R2 2 4 1

.PREPROCESS ADDRESISTORS NODCPATH 1G

.PREPROCESS ADDRESISTORS ONETERMINAL 1M

.DC V1 0 1 0.1

.PRINT DC V(2)

.END

Figure 13.13. Netlist of circuit with two dangling nodes, nodes 3
and 4, with .PREPROCESS ADDRESISTORS statements.

commands, however, a netlist file is allowed to contain only one NODCPATH and one
ONETERMINAL command each. If multiple NODCPATH and/or ONETERMINAL lines are
found in a single netlist file, Xyce will exit in error.

• It is possible that a single node can both have no DC path to ground and be con-
nected to only one device terminal. If both a NODCPATH and ONETERMINAL command
are present in a given netlist file, only the resistor corresponding to the ONETERMINAL
command is added to the netlist file filename xyce.cir and the resistor correspond-
ing to the NODCPATH command is omitted. If a NODCPATH command is present but a
ONETERMINAL command is not, then a resistor corresponding to the NODCPATH com-
mand will be added to the netlist as usual.

• In generating the file filename xyce.cir, the original .PREPROCESS ADDRESISTOR
statements are commented out with a warning message. This is to prevent Xyce from
creating the file filename xyce.cir xyce.cir when the file filename xyce.cir is
run. Note that this act is put in place simply to avoid generating redundant files. While
filename xyce.cir xyce.cir would be slightly different from filename xyce.cir
(e.g., a different date and time stamp), both files would functionally implement the
same netlist.
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XYCE-generated Netlist file copy: TIME=’07:32:31 AM’
* DATE=’Dec 19, 2007’
*Original Netlist Title:

*Circuit with two dangling nodes, nodes 3 and 4

V1 1 0 1
R1 1 2 1
C1 2 3 1
C2 3 0 1
R2 2 4 1

*.PREPROCESS ADDRESISTORS NODCPATH 1G
*Xyce: ".PREPROCESS ADDRESISTORS" statement
* automatically commented out in netlist copy.
*.PREPROCESS ADDRESISTORS ONETERMINAL 1M
*Xyce: ".PREPROCESS ADDRESISTORS" statement
* automatically commented out in netlist copy.

.DC V1 0 1 0.1

.PRINT DC V(2)

*XYCE-GENERATED OUTPUT: Adding resistors between ground
* and nodes connected to only 1 device terminal:

RONETERM1 4 0 1M

*XYCE-GENERATED OUTPUT: Adding resistors between ground
* and nodes with no DC path to ground:

RNODCPATH1 3 0 1G

.END

Figure 13.14. Output file filename xyce.cir which results from
the .PREPROCESS ADDRESISTOR statements for the netlist of Fig.
13.12 (with assumed file name filename).
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Figure 13.15. Schematic corresponding to the Xyce-generated
netlist of Fig. 13.14.
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14. TCAD (PDE Device)
Simulation with Xyce

Chapter Overview
This chapter gives guidance on how to use the mesh-based device simulation capability of
Xyce. It includes the following sections:

� Section 14.1, Introduction

� Section 14.2, One Dimensional Example

� Section 14.3, Two Dimensional Example

� Section 14.4, Doping Profile

� Section 14.5, Electrodes

� Section 14.6, Meshing

� Section 14.7, Mobility Models

� Section 14.8, Bulk Materials

� Section 14.9, Solver Options

� Section 14.10, Output and Visualization
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14.1 Introduction

This chapter describes how to use the mesh-based device simulation functionality of Xyce.
This capability is based on the solution a coupled set of partial differential equations
(PDEs), discretized on a mesh such as the one in Figure 14.1. Such devices are often
referred to as TCAD devices, where TCAD stands for Technology Computer Aided Design.
While the rest of Xyce is intended to be similar to analog circuit simulators such as SPICE,
the TCAD device capability is intended to be similar to well-known device simulators such
as PISCES [19] and DaVinci [20].

Two different TCAD devices are available Xyce: a one-dimensional device and a two-
dimensional device. These two devices have been implemented in a manner which allows
them to be invoked in the same way as a conventional lumped parameter circuit device.
Generally, this capability is intended for very detailed simulation of semiconductor devices,
such as diodes, bipolar transistors, and MOSFETs. One possible application of this ca-
pability is the evaluation and/or analysis of conventional SPICE-style lumped parameter
models.

NOTE: As of Xyce Release 2.1, the TCAD devices should still be considered to be a beta-
level capability. The primary focus of Xyce has been traditional analog circuit simulation,
so the TCAD devices have not been subject to the same level of testing as the traditional,
SPICE-style devices. The TCAD (PDE) device simulator in Xyce should be regarded as a
prototype for Charon, a high performance 3D device simulator that is under development
at Sandia.

NOTE: The use of square brackets [] in the doping and electrode specifications is no longer
correct as of Xyce Release 2.1. The correct delimiter to use for these parameters is now
the curly bracket {}.

Equations

The equations of device simulation are described by many references including Kramer [21]
and Selberherr [22]. The most common formulation, and the one that is used in Xyce, is
the drift-diffusion (DD) formulation. This formulation consists of three coupled PDE’s: a
single Poisson equation for electrostatic potential and two continuity equations; one each
for electrons and holes.

174



14.1 Introduction XyceTM Users’ Guide

Figure 14.1. MOSFET Mesh Example.

Poisson equation

The electrostatic potential φ satisfies Poisson’s equation:

−∇ · (ε∇φ(x)) = ρ(x) (14.1)

where ρ is the charge density and ε is the permittivity of the material. For semiconduc-
tor devices, the charge density is determined by the local carrier densities and the local
doping,

ρ(x) = q(p(x)− n(x) + C(x)) (14.2)

Here p(x) is the spatially-dependent concentration of holes, n(x) the concentration of elec-
trons, and q the magnitude of the charge on an electron. C(x) is the total doping con-
centration, which can also be represented as C(x) = N+

D (x) − N−
A (x), where N+

D the
concentration of positively ionized donors, N−

A the concentration of negatively ionized ac-
ceptors.
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Species continuity equations

The continuity equations relate the convective derivative of the species concentrations to
the creation and destruction of particles (“recombination/generation”).

∂n(x)
∂t

+∇ · Γn = −R(x) (14.3)

∂p(x)
∂t

+∇ · Γp = −R(x) (14.4)

Here n is the electron concentration and p is the hole concentration. R is the recombination
rate for both species. Γn and Γp are particle fluxes for electrons and holes, respectively.
The sign of R is chosen because R is usually expressed as a recombination rate, and
is positive if particles are annihilating. The right hand sides are equal since creation and
destruction of carriers occurs in pairs.

One way in which the drift-diffusion model differs from other common formulations is the
manner in which the quantities Γn and Γp are determined. The expressions used are:

Γn = n(x)µnE(x) + Dn∇n(x) (14.5)
Γp = p(x)µpE(x) + Dp∇p(x) (14.6)

Here µn, µp are mobilities for electrons and holes, and Dn, Dp are diffusion constants.
E(x) is the electric field, which is given by the gradient of the potential, or −∂φ/∂x.

Discretization

Xyce uses a box-integration discretization, with the Scharfetter-Gummel method for model-
ing the flux of charged species. This method has been described in detail elsewhere [21] [22] [23],
so it will not be described here.
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14.2 One Dimensional Example
The one-dimensional device was the first PDE-based device to be implemented in Xyce.
The single dimension limits its usefulness, but its simplicity makes it a good device to
use for a preliminary example. One dimensional devices are almost always two-terminal
diodes, and this fact allows for assumptions which simplify the specification and shorten
the parameter list of the device.

An example netlist, for a simulation of a one-dimensional diode, is shown in Figure 14.2.
The corresponding schematic is in Figure 14.3. The circuit is a regulator circuit, and is
based on the principle that connecting one or more diodes in series with a resistor and
a power supply will produce a relatively constant voltage. The input voltage (node 2) is a
sinewave, with a frequency of 50 Hz and an amplitude of 1 V. The expected output (node
3) should be a (mostly) flat signal.

Netlist Explanation

In Figure 14.2, the PDE device instance line is in red, while the PDE device model line
is in blue. Currently, there are almost no model parameters for PDE devices. The model
line serves only to set the level. The default level is 1, for a one-dimensional device. Two
dimensional devices are invoked by setting level=2. Note that in this example, the level is
not explicitly set, and so the default (1) is used.

The instance line is where most of the specific parameters are set for a TCAD device. In
this example, the line appears as:

YPDE Z1 3 4 DIODE na=1.0e19 nd=1.0e19 graded=0 l=5.0e-4 nx=101

na and nd are doping parameters, and represent the majority carrier doping levels on the N-
side and the P-side of the junction, respectively. graded=0 is also a doping parameter, and
specifies that the junction is not a graded junction, but is an abrupt step-function junction
instead. l=5.0e-4 specifies the length of the device, in cm. nx=101 specifies that there are
101 mesh points, including the two endpoints. For the one-dimensional device, the mesh
is always uniform, so the size of each mesh cell, ∆x will be:

∆x =
l

nx− 1
=

5.0e-4 cm
100

= 5.0e-6 cm (14.7)

The mesh points i = 0− 101 will have the following locations, xi:

xi = i∆x
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PDE Diode Regulator Circuit
VP 1 0 PULSE(0 5 0.0 2.0e-2 0.0 1.0e+20 1.2e+20)
VF 2 1 SIN(0 1 50 2.0e-2)
VT1 4 0 0V
R1 2 3 1k

* TCAD/PDE Device
YPDE Z1 3 4 DIODE na=1.0e19 nd=1.0e19 graded=0
+ l=5.0e-4 nx=101

.MODEL DIODE ZOD

.TRAN 1.0e-3 12.0e-2

.print TRAN format=tecplot
+ v(1) v(2) v(3) v(4) I(VF) I(VT1)

.options NONLIN maxstep=100 maxsearchstep=3
+ searchmethod=2 nox=1

.options TIMEINT reltol=1.0e-3 abstol=1.0e-6

.END

Figure 14.2. One dimensional diode netlist. This circuit is a
voltage regulator. The input signal should be a sinewave, while
the output signal should be nearly flat. For the result of this netlist,
see Figure 14.4
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Figure 14.3. Voltage regulator schematic. The diode, Z1, is the
PDE device in this example.

xo = 0.0 cm
x1 = 5.0e-6 cm

.

.

.

x101 = 5.0e-4 cm

Boundary Conditions and Doping Profile

Note that nothing has been specified in the example netlist about electrodes, or boundary
conditions, and that the doping specification is minimal. This is because the example relies
a lot on default parameters. A one dimensional device can only have exactly 2 electrodes
connected to the circuit. These two electrodes are at opposite ends of the domain, one at
the first mesh point (x=0.0 cm, i=0) and the other at the opposite end of the domain, at the
last mesh point (x=5.0e-4 cm, i=101).

The electrode associated with the first mesh point (x=0.0 cm) is connected to the second
circuit node on the instance line, while the electrode associated with the last mesh point
(x=l) is connected to the first circuit node on the instance line. For the doping used in
this example, the junction is in the exact center of the device (x=l/2), and the n-side is
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the region defined by x<l/2, and the p-side is the region defined by x>l/2. This default
doping, along with the electrode-circuit connectivity, result in the one-dimensional device
to behave like a traditional SPICE-style diode. For a complete discussion of how to specify
a doping profile see section 14.4. For a complete discussion of how to specify electrodes
in detail (including boundary conditions), see section 14.5.

Results

The transient result of this circuit is shown in Figure 14.4. The input signal (node 2) is
represented by the blue line, and the output signal (node 3) is represented by the red line.
The voltage drop across the diode is nearly the same for a wide range of currents, and is
approximately 0.67 V. The voltage drop across the series resistor, R1, is much more sensi-
tive to the current magnitude, and so most of the voltage variation of the input sinewave is
accounted for by R1.
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Figure 14.4. Transient result for the voltage regulator circuit in
Figure 14.2. The input voltage is represented by the blue line,
while the output voltage is given by the red line.
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14.3 Two Dimensional Example
An example netlist, for a simulation of a two-dimensional bipolar transistor, is shown in
Figure 14.5. As before, the PDE device instance line is in red, while the PDE device model
line is in blue. In this case, note that the level has been specified on the model line, and it
has been set to 2. This is required for the two-dimensional device. This particular example
is a DC sweep of a bipolar transistor device. A schematic, illustrating this circuit is shown
in Figure 14.6.

Netlist Explanation

The two-dimensional device can have 2-4 electrodes. (this limitation will be relaxed in
future versions of Xyce) In this example there are three; node 5, node 3 and node 7.
These correspond to the three names on the ”node” line, which appears as:

+ node = {name = collector, base, emitter}

This line specifies that node 5 is connected to an electrode named ”collector”, node 3
is connected to an electrode named ”base”, and node 7 is connected to an electrode
named ”emitter”. Although this example only contains the electrode names, the ”node”
specification can contains a lot of information. For a full explanation of all the electrode
parameters, see section 14.5.

The next line contains parameters concerned with plotting the results, and appears as
follows:

+ tecplotlevel=2 txtdatalevel=1

Note that these are not related to the output specified by .PRINT, which outputs circuit data.
The tecplotlevel command enables files to be output which are readable by Tecplot.
Tecplot can then be used to create contour plots of quantities such as the electron density,
electrostatic potential and the doping profile. Figures 14.7 and 14.8 contain examples of
Tecplot-generated contour plots, which were generated from the results of this example.

The txtdatalevel command enables a text file with volume averaged information to be
output to a file. Currently, both of these output files will be updated at each time step or DC
sweep step.

The next line, mobmodel=arora, specifies which mobility model to use. For more detail on
available mobility models, see section 14.7.
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Two Dimensional Example
VPOS 1 0 DC 5V
VBB 6 0 DC -2V
RE 1 2 2K
RB 3 4 190K

Z1BJT 5 3 7 PDEBJT meshfile=internal.msh
+ node = {name = collector, base, emitter}
+ tecplotlevel=2 txtdatalevel=1
+ mobmodel=arora
+ l=2.0e-3 w=1.0e-3
+ nx=30 ny=15

* Zero volt sources acting as an ammeter to measure the
* base, collector, and emmitter currents, respectively
VMON1 4 6 0
VMON2 5 0 0
VMON3 2 7 0

.MODEL PDEBJT ZOD level=2

.DC VPOS 0.0 12.0 0.5 VBB -2.0 -2.0 1.0

.options LINSOL type=superlu

.options NONLIN maxstep=70 maxsearchstep=1
+ searchmethod=2 in_forcing=0 nlstrategy=0

.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
+ firstdcopstep=0 lastdcopstep=1

.PRINT DC V(1) I(VMON1) I(VMON2) I(VMON3)

.END

Figure 14.5. Two-dimensional BJT netlist. Some results of this
netlist can be found in Figures 14.7 and 14.8.
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The last two lines, specify the mesh of the device, and are given by:

+ l=2.0e-3 w=1.0e-3
+ nx=30 ny=15

This numbers are used in nearly the same way as the l and nx parameters were used in
the one-dimensional case. The mesh is Cartesian, and the spacing is uniform.

Doping Profile

As in the one-dimensional example, the two-dimensional example in Figure 14.5 does not
specify anything about the doping profile, and thus relies upon defaults. In this case there
are three specified electrodes, which by default results in the doping profile of the bipolar
junction transistor (BJT). For a complete description of how to specify a doping profile in
detail, see section 14.4. This section also describes the various default impurity profiles.

Boundary Conditions and Electrode Configuration

As in the one-dimensional example, the two-dimensional example in Figure 14.5 does not
specify anything about the electrode configuration or the boundary conditions, and relies
on default settings. To be consistent with the default 3-terminal doping, the device has
terminals that correspond to that of a BJT. All three electrodes (collector, base, emitter) are
along the top of the device.

By default all electrodes are considered to be neutral contacts. The boundary conditions
applied to the electron density, hole density and electrostatic potential are all Dirichlet
conditions.

For a complete discussion of how to specify electrodes in detail (including boundary con-
ditions), see section 14.5.

Results

Results for the two-dimensional example can be found in Figures 14.7, 14.8 and 14.9. The
first two figures are contour plots of the electrostatic potential. The first one corresponds
to the first DC sweep step, where VPOS is set to 0.0 Volts. The second one corresponds
to the final DC sweep step, in which VPOS has a value of 12.0 volts. The voltage source
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VPOS applies a voltage to the emitter load resistor, RE, so some of the 12.0V is dropped
across RE, an the rest is applied to the BJT.

The third figure is an I-V curve of the dependence of the three terminal currents on applied
emitter voltage. For the entire sweep, a negative voltage of 2.0 V has been applied to the
base load resistor, and as this transistor is a PNP transistor, this results in the transistor
being in an “on” state. The emitter-collector current varies nearly linearly with the applied
emitter voltage. Also, the three currents sum to nearly zero, which one would expect
because of current conservation.

Note that the mesh is visible in Figure 14.7, and was generated using the internal “uniform
mesh” option. Generally using this sort of mesh will work numerically, in that Xyce will
converge to an answer. However, this mesh will probably not produce a very accurate
result, as it does not resolve the depletion regions very well. In order to obtain better
accuracy, either a finer uniform mesh would need to be used, or a nonuniform mesh,
refined in around the depletion regions should be used. As described in section 14.6,
refined, nonuniform meshes must be read in from an external mesh generator, such as the
SGFramework [21].
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Figure 14.6. Two-Dimensional BJT Circuit Schematic. This
schematic is for the circuit described by the netlist in Figure 14.5.
The mesh in the large circle is the mesh used in the example. The
other mesh, which contains some mesh refinement, is included in
the figure as an example of what is possible with an external mesh
generator.
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Figure 14.7. Initial Two-Dimensional BJT Result. Contour plot of
the electrostatic potential at the first DC sweep step of the netlist in
Figure 14.5. Note the mesh, which was generated using the inter-
nal “uniform mesh” option. This plot was generated using Tecplot.

Figure 14.8. Final Two-Dimensional BJT Result. Contour plot of
the electrostatic potential at the last DC sweep step of the netlist
in Figure 14.5. This plot was generated using Tecplot.
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Figure 14.9. I-V Two-Dimensional BJT Result, for the netlist in
Figure 14.5. The x-axis is in Volts. The three plotted currents are
through the three BJT electrodes, and as expected they add (if cor-
rected for sign) to zero. I(VMON1) is the base current, I(VMON2)
the collector current, and I(VMON3) the emitter current. V(1) is
the voltage applied to the emitter load resistor, RE. This plot was
generated using Tecplot.
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14.4 Doping Profile

In the two examples, no doping parameters were specified, and Xyce used the defaults.
Default profiles are uniquely specified by the number of electrodes. In practice, especially
for two-dimensional simulations, the user will generally need to specify the doping profile
manually.

NOTE: If an external mesh (from the SGFramework) is used, the doping profile will be read
in from the mesh file, and it is not necessary (or appropriate) to specify any doping in the
netlist.

Manually Specifying the Doping

A circuit netlist, which includes a one-dimensional device with a detailed, manual specifi-
cation of the doping profile, is given in Figure 14.10. A similar, two-dimensional, version
of this problem is given in Figure 14.12. For the purposes of this discussion, the one-
dimensional example will be referred to, but information conveyed is equally applicable to
the two-dimensional case.

In both examples, the parameters associated with doping are in red font. The doping is
specified with one or more regions, which are summed together to get the total profile.
Doping regions are specified in a tabular format, with each column representing a different
region.

In the one-dimensional example, there are three regions, which are illustrated in Fig-
ure 14.11. Region 1 is a uniform n-type doping, with a constant magnitude of 4.0e+12
donors per cubic cm. This magnitude is set by the parameter nmax. As the doping in this
region is spatially uniform, the only meaningful parameters are function (which in this
case specifies a spatially uniform distribution), type (ntype or ptype) and nmax. The other
parameters, nmin through flatx (1D) or flaty (2D), are ignored for a spatially uniform
region.

Region 2 is a more complicated region, in that the profile varies with space. This region
is doped with p-type impurities, and has a Gaussian shape. Semiconductor processing
often consists of an implant followed by an anneal, which results in a diffusive profile.
The Gaussian function is a solution to the diffusion problem, when it is assumed that the
impurity exists in a fixed quantity. Thus, the Gaussian shape is an appropriate choice for
the doping regions of a lot of devices.
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Doping and Electrode specification example
TITLE Xyce PN Junction Simulation
vscope 0 1 0.0
rscope 2 1 50.0
cid 3 0 1.0u
r1 4 3 1515.0
vid 4 0 5.00
Z1DIODE 2 3 PDEDIODE nx=301 l=26.0e-4
* DOPING REGIONS: region 1, region 2, region 3
+ region= {function = uniform, gaussian, gaussian
+ type = ntype, ptype, ntype
+ nmax = 4.0e+12, 1.0e+19, 1.0e+18
+ nmin = 0.0e+00, 4.0e+12, 4.0e+12
+ xloc = 0.0 , 24.5e-04, 9.0e-04
+ xwidth = 0.0 , 4.5e-04, 8.0e-04
+ flatx = 0 , 0 , -1 }
*--------end of Diode PDE device ----------------
.MODEL PDEDIODE ZOD level=1
.options LINSOL type=superlu
.options NONLIN maxsearchstep=1 searchmethod=2
.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
.DC vscope 0 0 1
.print DC v(1) v(2) v(3) v(4) I(vscope) I(vid)
.END

Figure 14.10. One-dimensional example, with detailed doping.
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The peak of the Region 2 doping profile is given by the parameter nmax, and is 1.0e+19
acceptors per cubic cm. This peak has a location in the device which is specified by
xloc=24.5e-04 cm. The parameters nmin and xwidth are fitting parameters.

Figure 14.11. Doping Profile, Absolute Value. This corresponds
to the doping specified by the netlist in Figure 14.10

Region 3 is also based on a Gaussian function, but unlike Region 2, it is flat on one side of
the peak. This is set by the flatx parameter. The ”flat” parameters follow the convention
given by Table 14.1.
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flatx or flaty

value
Description 1D Cross

Section

0 Gaussian on both sides of the peak (xloc) location.

+1 Gaussian if x>xloc, flat (constant at the peak value) if

x<xloc.

-1 Gaussian if x<xloc, flat (constant at the peak value) if

x>xloc.
Table 14.1: Description of the flatx, flaty doping parameters

Default Doping Profiles

Xyce has a few default doping profiles which are invoked if the user doesn’t bother to
specify detailed doping information. The default doping profiles are an artifact of early
TCAD device development in Xyce, but are sometimes still useful. In particular, the simple
step-junction diode is often a useful canonical problem. It is convenient to invoke a step
junction doping without having to use the more complex region tabular specification.

Most real devices will have doping profiles that do not exactly match the default profiles.
When attempting to simulate a realistic device, it will be necessary to skip the defaults and
use the region tables described in the previous section.

One Dimensional Case

For the one-dimensional case, it is assumed that the doping profile is that of a simple
junction diode, with the junction location exactly in the middle. The acceptor and donor
concentrations are given by the parameters Na and Nd, respectively.

Note that the usage of Na and Nd, implicitly specifies a step junction doping profile, and is
mutually exclusive with the more complex “doping region” table specification, described in
section 14.4. If a netlist is input to Xyce which includes both a region table and Na (or Nd),
the code will immediately exit with an error.
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Two Dimensional Case

Doping level defaults in the two dimensional case are somewhat more complicated than in
the one-dimensional case, because having two-dimensions allows for more configurations,
and an arbitrary number (2-4) of electrodes. In Xyce, it was decided that the default doping
profiles would be determined uniquely by the number of electrodes. The three available
default dopings are given in Table 14.2. In the case of the BJT and MOSFET dopings,
it is possible to specify either n-type or p-type using the type instance parameter. If the
detailed, manual doping is used, then the type parameter is ignored.

For a two-electrode device, the default doping is that of a simple diode. The acceptor
and donor doping parameters, Na and Nd are used in the same manner as in the one-
dimensional device. As in the one-dimensional device, the junction is assumed to be ex-
actly in the middle of the domain.

For a three-electrode device (like the example), the default doping is that of a bipolar junc-
tion transistor (BJT). By default the transistor is a PNP, but by setting the instance param-
eter type=NPN, an NPN transistor can be specified instead. The two-dimensional example
in section 14.3 relies on this default.

For a four-terminal device, the default doping is that of a metal-oxide-semiconductor (MOS-
FET). Currently, the maximum number of electrodes is four, and no default profiles are
available for more than four electrodes. By default this transistor is assumed to be NMOS,
rather than PMOS.

Number of

Electrodes
Doping Profile

2 Step Function Diode

3 Bipolar Junction Transistor (BJT)

4 Metal-Oxide Semiconductor

Field-Effect Transistor(MOSFET)
Table 14.2: Default Doping profiles for different numbers of elec-
trodes
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14.5 Electrodes
In the two examples, minimal electrodes were specified, and Xyce used the defaults. In
practice, especially for two-dimensional simulations, the user will need to specify the elec-
trodes in more detail.

NOTE: If an external mesh (from the SGFramework) is used, some of the electrode infor-
mation (the locations, and lengths) will be specified in the mesh file, so they should not be
specified in the netlist.

Manually Specifying the Electrodes

A detailed electrode specification is specified in blue font in Figure 14.12. As with the
doping parameters, the electrode parameters are specified in a tabular format, in which
each columns of the table specifies the parameters for a different electrode. The most
important parameter (for getting the code to run without immediately exiting with an error)
is the name parameter. It is the only required parameter.

The number of specified electrodes must match the number of connected circuit nodes,
and the order of the electrode columns, from left to right, is in the same order as the circuit
nodes, also from left to right. In the example of Figure 14.12, the first electrode column,
which specifies an electrode named “anode”, is connected to the circuit through circuit
node 2. Respectively, the second column, for the “cathode” electrode, is connected to the
circuit by circuit node 3.

If using an external mesh (see section 14.6), the external mesh file must have this same
number of electrodes as well. Also, if using the external mesh, the electrode names speci-
fied in the electrode table must match (case insensitive) with the electrode names used by
the external mesh.

Boundary Conditions

In the example, the bc parameter has been set to “Dirichlet” on all the electrodes, which
is the default. The bc parameter sets the type of boundary condition that is applied to the
density variables, the electron density and the hole density. There are two possible settings
for the bc parameter, Dirichlet and Neumann. If Dirichlet is specified, the electron and hole
densities are set to a specific value at the contact, and the applied values enforce charge
neutrality. See the Xyce Reference Guide [3] for the charge-neutral equation. If Neumann
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Doping and Electrode specification example
vscope 1 0 0.0
rscope 2 1 50.0
cid 3 0 1.0u
r1 4 3 1515.0
vid 4 0 1.00
*------------- Diode PDE device ------------------
Z1DIODE 2 3 PDEDIODE
+ tecplotlevel=1 txtdatalevel=1 cyl=1
+ meshfile=internal.msh
+ nx=25 l=70.0e-4 ny=40 w=26.0e-4
* ELECTRODES: ckt node 2, ckt node 3
+ node = {name = anode, cathode
+ bc = dirichlet, dirichlet
+ start = 0.0, 0.0
+ end = 70.0e-4, 70.0e-4
+ side = top, bottom
+ material = neutral, neutral
+ oxideBndryFlag = 0, 0 }
* DOPING REGIONS: region 1, region 2, region 3
+ region= {function = uniform, gaussian, gaussian
+ type = ntype, ptype, ntype
+ nmax = 4.0e+12, 1.0e+19, 1.0e+18
+ nmin = 0.0e+00, 4.0e+12, 4.0e+12
+ xloc = 0.0 , 60.0e-04, 100.0
+ xwidth = 0.0 , 4.0e-04, 1.0
+ yloc = 0.0 , 24.5e-04, 9.0e-04
+ ywidth = 0.0 , 4.5e-04, 8.0e-04
+ flatx = 0 , -1 , -1
+ flaty = 0 , 0 , -1 }
*--------end of Diode PDE device ----------------
.MODEL PDEDIODE ZOD level=2
.options LINSOL type=superlu
.options NONLIN maxsearchstep=1 searchmethod=2
.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
.DC vscope 0 0 1
.print DC v(1) v(2) v(3) v(4) I(vscope) I(vid)
.END

Figure 14.12. Two-dimensional example, with detailed doping
and detailed electrodes. 195
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is specified, a zero-flux condition is applied, which enforces that the current through the
electrode will be zero.

This parameter does not affect the electrostatic potential boundary condition. The bound-
ary condition applied to the potential is always Dirichlet, and is (in part) determined from
the connected nodal voltage. To apply a specific voltage to an electrode contact, a voltage
source should be attached to it, such as VBB in the schematic Figure 14.6.

Electrode Material

Several different electrode materials can be specified. A list is given in Table 14.3. The
main effect of any metal (non-neutral) material is the impose a Schottky barrier at the
contact. This generally makes numerical solution more difficult, so any materials should
be applied with caution.

The Xyce Reference Guide [3] has a detailed description of Schottky barriers and how
they are imposed on contacts in Xyce. Also, values for electron affinities of various bulk
materials and workfunction values for the various metal contacts are given in the Reference
Guide.

Material Symbol Comments

neutral neutral Default

aluminum al

p+-polysilicon ppoly

n+-polysilicon npoly

molybdenum mo

tungsten w

molybdenum disilicide modi

tungsten disilicide wdi

copper cu

platinum pt

gold au

Table 14.3: Electrode Material Options. Neutral contacts are the
default, and pose the least problem to the solvers.

There is also an oxideBndryFlag parameter, which if set to true (1), will model the contact
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as having an oxide layer in between the metal contact and the bulk semiconductor. By
default, oxideBndryFlag is false (0). Note that this oxide layer model does not currently
include displacement current, so transient capacitive effects will not be seen in the results.

Location Parameters

Each electrode has three location parameters: start, end, and side. These are only
necessary if using the internal mesh and should not be specified if using an external,
SGFramework mesh.

For the internal mesh, the mesh is assumed to be rectangular, and any electrode is as-
sumed to be on one of the four sides. The four side possibilities are: top, bottom, right
and left. These four sides are parallel to mesh directions. The start and end parameters
are floating point numbers which specify the starting and ending location of an electrode,
in units of centimeters.

The lower left hand corner of the mesh rectangle is located at the origin. A side=bottom
electrode with start=0.0 and end=1.0e-4 will originate at the lower left hand corner of the
mesh (x=0.0, y=0.0) and end at (x=1.0e-4, y=0.0).

NOTE: Xyce will attempt to match the specified electrode to the specified mesh. However,
if the user specifies a mesh that is not consistent with the electrode locations, the elec-
trodes will not be able to have the exact length specified. For example, if the mesh spacing
is ∆x = 1.0e-5, then the electrodes can only have a length that is a multiple of 1.0e-5.

Electrode Defaults

There are defaults for all the electrode parameters except the names. In practice, the
locations of the electrodes will usually be explicitly specified (either using the electrode
table, or as part of an external mesh file). Default electrode locations have been created to
correspond with the default dopings, and they should only be used in that context.

Location Parameters

In practice, the locations of the electrodes will usually be explicitly specified, but they have
defaults to correspond with the default dopings. The default electrode locations in one-
dimensional devices are for a diode. One electrode is located at x=xmin, while the other is
located at x=xmax.
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The default electrode locations in two-dimensional devices are dependent on the number
of electrodes, similar to the default dopings. Table 14.2 can be used to determine the
configurations. For the two-terminal diode, the two electrodes are along the y-axis, at the
x=xmin and x=xmax extrema. For the three-terminal BJT , all three electrodes are parallel
to the x-axis, along the top, at y=ymax. For the four-terminal MOSFET, the drain, gate, and
source electrodes are also along the top, but the bulk electrode spans the entire length of
the bottom of the mesh, at y=ymin.
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14.6 Meshes

Meshes from the SG Framework (External, 2D)

It is possible to have Xyce read in a two-dimensional mesh which was generated exter-
nally, by the SGFramework [21]. The mesh pictured in Figure 14.1 is such a mesh, and
so is the refined mesh (not inside the circle) in Figure 14.6. To use an SGF-generated
mesh, the instance parameter, ”meshfile” must be used, and set to be the name of the
SGFramework-generated file. Xyce will assume that the mesh file is located in the lo-
cal execution directory. One advantage of using an externally generated mesh (over an
internally generated mesh - see next section) is that external meshing tools are more so-
phisticated, and in particular have mesh refinement capabilities.

Instructions for the usage of the SGFramework is outside the scope of this document. If the
user wishes to generate meshes in this manner, it is best to consult Kramer [21]. Future
versions of Xyce may accept mesh files generated by other mesh generators, such as
Cubit [24].

Cartesian Meshes (Internal, 1D and 2D)

One dimensional and two-dimensional devices can both create Cartesian meshes, without
requiring an external mesh generator. For the two-dimensional devices, it is necessary
to specify meshfile=internal.msh to invoke the Cartesian meshing capability. For one-
dimensional devices, this isn’t needed, as there is no other option.

Meshes generated in this manner are very simple, in that there are only two parameters
per dimension, and the resulting mesh is uniform. An example of such a mesh can be seen
in Figure 14.7. The mesh spacing is determined from the following expressions:

∆x =
l

nx− 1
(14.8)

∆y =
w

ny − 1
(14.9)

This mesh specification assumes that the domain is a rectangle. Non-rectangular domains
can only be described using an external mesh program.
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Cylindrical meshes, 2D

For two-dimensional devices, the simulation area may be a cylinder slice. This capability
is turned on by the instance parameter, cyl=1. For an example, see Figure 14.13. It is
assumed that the axis of the cylinder corresponds to the minimum radius (or x-axis value)
of the mesh, while the circumference corresponds to the maximum radius (or maximum
x-axis value). This feature can be applied to either external or internal two-dimensional
meshes.

Figure 14.13. Cylindrical Mesh Example. This mesh has been
designed to match the electron microscope image, which is of a
stockpile device.
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14.7 Mobility Models
There are several mobility models available to both the one and two dimensional devices,
and they are listed in Table 14.4. These models are fairly common, and can be found in
most device simulators. [19] [20] These models are described in more detail in the Xyce
Reference Guide [3] .

Mobility Name Description Reference

arora Basic mobility model Arora, et al. [25]

analytic Basic mobility model Caughy and Thomas [26]

carr Includes carrier-carrier

interactions
Dorkel and Leturq [27]

surface Lombardi Surface Mobility

Model
Lombardi, et al. [28]

Table 14.4: Mobility models available for PDE devices

Specifying the mobility model from the netlist is done by setting the mobmodel parameter to
the name of the model. Model names are given in the first column of Table 14.4. The mo-
bility model is specified as an instance parameter on the device instance line, as (typically)
mobmodel=arora. See the usage in Figure 14.5 for a more detailed example.

The default mobility is the ”carr” mobility, which includes carrier-carrier interactions. This
model has a stronger dependence on carrier density than the other two models, and intro-
duces some nonlinearity into the problem. If having convergence problems, consider using
either the ”arora” or ”analytic” model, as both of these models are a little bit simpler.
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14.8 Bulk Materials
The bulk material is specified using the bulkmaterial instance parameter. Xyce currently
supports Silicon (si) as a bulk material and this is the default. It can also simulate Gal-
lium Arsenide (gaas) and Germanium (ge), but these materials have not been extensively
tested.

The mobility models described in the previous section each support all three materials,
and the dielectric permittivity is correct for all three, but the carrier lifetime models may not
be. These issues will be resolved in a future Xyce release.
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14.9 Solver Options
Problems that are based on TCAD/PDE devices have different optimal solver settings than
do analog circuit problems. Generally, as these devices are mesh-based, and have a more
predictable topology, iterative linear solvers have a better chance of being successful than
they do for analog circuit simulation. Note that if using a direct solver (klu, superlu, or
ksparse), the best option is superlu, because ksparse and klu have both been optimized
for circuits (not mesh-based PDE problems), while superlu is more general.

On the nonlinear solver level, voltage limiting doesn’t have an obvious application to PDE
devices, and quadratic line search appears to be the best algorithm. The solver options
specified in the example netlist Figure 14.5 are adequate for simulations that have a simple
(linear) circuit attached.

For problems which involve a complicated external circuit, it is best to apply the two-level
Newton algorithm to the nonlinear solve. This algorithm is described in detail in Keiter [16]
and Mayaram [17]. An overview of this algorithm, as applied to powenode parasitics, can
be found in section 11.2, and examples on how to use this algorithm are in section 11.3.

203



XyceTM Users’ Guide TCAD (PDE Device) Simulation with Xyce

14.10 Output and Visualization

Using the .PRINT Command

For simple plots (such as I-V curves), output results for Xyce can be generated with the
.PRINT statement, which is described in detail in section 9.1. Figures 14.4 and 14.9 are
examples of the kind of data that is produced with .PRINT statement netlist commands.
These particular figures were plotted in Tecplot, but many other plotting programs would
also have worked, including XDAMP [29].

Multi-dimensional Plots

Device simulation has visualization needs which go beyond that of conventional circuit
simulation. Multi-dimensional perspective and/or contour plots are often desirable. Xyce
is capable of outputting multi-dimensional plot data in several formats, including Tecplot,
GnuPlot, and Sgplot. Currently, the options for each of these formats can only enable or
disable the output of files, and when enabled, a new file (or a new append to an existing
file) will happen at every time step or DC sweep step. For long simulations, this may
produce a prohibitive number of files. Currently, there is no equivalent to the .OPTIONS
OUTPUT INITIAL INTERVAL command, nor does the output of plot data currently use this
command. Plot files are either output at every step or not at all.

For each type of plot file, the file is placed in the execution directory. Each individual device
instance is given a unique file, or files, and the file names are derived from the name of the
PDE device instance. The instance names provides the prefix, and the file type (tecplot,
gnuplot, sgplot) determines the suffix.

Tecplot Data

Tecplot is a commercial plotting program from Amtec Engineering, Inc., and is the best
choice for creating contour plots of spatially dependent data. All of the graphical examples
in this chapter were created with Tecplot. (see Figures 14.7 and 14.8 for examples) The
output of Tecplot files is enabled using the instance parameter, tecplotlevel=1. If set to
zero, no Tecplot files are output. If set to one, a separate Tecplot file is output for each
nonlinear solve. If set to two, a single Tecplot file, which contains data for every nonlinear
solve is created and is appended at the end of each solve.
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By default tecplotlevel is set to one, meaning the code will, by default produce a separate
Tecplot file for each nonlinear solve. The suffix for Tecplot data files is *.dat. Internally, the
file is an ASCII text file. Tecplot does have a binary format, but Xyce has not yet been set
up to use it.

Note that it is also possible to set tecplotlevel=2. Doing this will force Xyce to create one
single Tecplot file, and the data from each solve will be appended to this file as a separate
zone. This makes it possible to use Tecplot to create animations.

Gnuplot Data

Gnuplot is an open source plotting program, which is available on most Linux/Unix plat-
forms. The parameter for this type of output is gnuplotlevel=1. This type of output file is
off (zero) by default, meaning no Gnuplot files will be output. The suffix for Gnuplot files is
*Gnu.dat. Like Tecplot files, Gnuplot files are also in ASCII text format.

NOTE: Gnuplot will only work with structured Cartesian meshes. Externally created, un-
structured meshes (even ones that appear Cartesian) cannot be plotted with Gnuplot.

Sgplot Data

Sgplot is the plotting program for the SGFramework [21]. The parameter for this type of
output is sgplotlevel=1. This type of output file is off (zero) by default. The suffix for
Sgplot data files is *.res. Internally this file is in binary format. Note that it is not a machine-
independent file format.

Volume Averaged Data

Xyce can also output volume-averaged information for each PDE device. This is enabled
by setting the instance parameter, txtdatalevel=1. It is off (zero) by default, meaning no
text files with volume averaged data will be output.
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